Cargando…
Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes
Spiking neural networks (SNNs) are the third generation of neural networks and can explore both rate and temporal coding for energy-efficient event-driven computation. However, the decision accuracy of existing SNN designs is contingent upon processing a large number of spikes over a long period. Ne...
Autores principales: | Xu, Changqing, Zhang, Wenrui, Liu, Yu, Li, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043203/ https://www.ncbi.nlm.nih.gov/pubmed/32140093 http://dx.doi.org/10.3389/fnins.2020.00104 |
Ejemplares similares
-
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021) -
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
por: Davidson, Simon, et al.
Publicado: (2021) -
Low Cost Interconnected Architecture for the Hardware Spiking Neural Networks
por: Luo, Yuling, et al.
Publicado: (2018) -
Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics
por: Steffen, Lea, et al.
Publicado: (2021) -
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
por: Liu, Siying, et al.
Publicado: (2023)