Cargando…
Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series
A novel methodology is proposed to robustly map oil seed rape (OSR) flowering phenology from time series generated from the Copernicus Sentinel-1 (S1) and Sentinel-2 (S2) sensors. The time series are averaged at parcel level, initially for a set of 229 reference parcels for which multiple phenologic...
Autores principales: | d’Andrimont, Raphaël, Taymans, Matthieu, Lemoine, Guido, Ceglar, Andrej, Yordanov, Momchil, van der Velde, Marijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier Pub. Co
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043338/ https://www.ncbi.nlm.nih.gov/pubmed/32184531 http://dx.doi.org/10.1016/j.rse.2020.111660 |
Ejemplares similares
-
Crop Identification Using Deep Learning on LUCAS Crop Cover Photos
por: Yordanov, Momchil, et al.
Publicado: (2023) -
Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2
por: Meroni, Michele, et al.
Publicado: (2021) -
Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union
por: d’Andrimont, Raphaël, et al.
Publicado: (2020) -
Social capital and transaction costs in millet markets
por: Jacques, Damien Christophe, et al.
Publicado: (2018) -
Flowering Phenology and the Influence of Seasonality in Flower Conspicuousness for Bees
por: Martins, Amanda Eburneo, et al.
Publicado: (2021)