Cargando…
First Indian report on genome-wide comparison of multidrug-resistant Escherichia coli from blood stream infections
BACKGROUND: Multidrug-resistant (MDR) E. coli with extended-spectrum β-lactamases (ESBLs) is becoming endemic in health care settings around the world. Baseline data on virulence and antimicrobial resistance (AMR) of specific lineages of E. coli circulating in developing countries like India is curr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043739/ https://www.ncbi.nlm.nih.gov/pubmed/32101543 http://dx.doi.org/10.1371/journal.pone.0220428 |
Sumario: | BACKGROUND: Multidrug-resistant (MDR) E. coli with extended-spectrum β-lactamases (ESBLs) is becoming endemic in health care settings around the world. Baseline data on virulence and antimicrobial resistance (AMR) of specific lineages of E. coli circulating in developing countries like India is currently lacking. METHODS: Whole-genome sequencing was performed for 60 MDR E. coli isolates. The analysis was performed at single nucleotide polymorphism (SNP) level resolution to identify the presence of their virulence and AMR genes. RESULTS: Genome comparison revealed the presence of ST-131 global MDR and ST410 as emerging-MDR clades of E. coli in India. AMR gene profile for cephalosporin and carbapenem resistance differed between the clades. Genotypes bla(CTX-M-15) and bla(NDM-5) were common among cephalosporinases and carbapenemases, respectively. For aminoglycoside resistance, rmtB was positive for 31.7% of the isolates, of which 95% were co-harboring carbapenemases. In addition, the FimH types and virulence gene profile positively correlated with the SNP based phylogeny, and also revealed the evolution of MDR clones among the study population with temporal accumulation of SNPs. The predominant clone was ST167 (bla(NDM) lineage) followed by ST405 (global clone ST131 equivalent) and ST410 (fast spreading high risk clone). CONCLUSIONS: This is the first report on the whole genome analysis of MDR E. coli lineages circulating in India. Data from this study will provide public health agencies with baseline information on AMR and virulent genes in pathogenic E. coli in the region. |
---|