Cargando…
Manipulating the type VI secretion system spike to shuttle passenger proteins
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but spe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043769/ https://www.ncbi.nlm.nih.gov/pubmed/32101557 http://dx.doi.org/10.1371/journal.pone.0228941 |
_version_ | 1783501455082127360 |
---|---|
author | Wettstadt, Sarah Filloux, Alain |
author_facet | Wettstadt, Sarah Filloux, Alain |
author_sort | Wettstadt, Sarah |
collection | PubMed |
description | The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined “evolved” components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an “evolved” VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer. |
format | Online Article Text |
id | pubmed-7043769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70437692020-03-09 Manipulating the type VI secretion system spike to shuttle passenger proteins Wettstadt, Sarah Filloux, Alain PLoS One Research Article The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined “evolved” components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an “evolved” VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer. Public Library of Science 2020-02-26 /pmc/articles/PMC7043769/ /pubmed/32101557 http://dx.doi.org/10.1371/journal.pone.0228941 Text en © 2020 Wettstadt, Filloux http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wettstadt, Sarah Filloux, Alain Manipulating the type VI secretion system spike to shuttle passenger proteins |
title | Manipulating the type VI secretion system spike to shuttle passenger proteins |
title_full | Manipulating the type VI secretion system spike to shuttle passenger proteins |
title_fullStr | Manipulating the type VI secretion system spike to shuttle passenger proteins |
title_full_unstemmed | Manipulating the type VI secretion system spike to shuttle passenger proteins |
title_short | Manipulating the type VI secretion system spike to shuttle passenger proteins |
title_sort | manipulating the type vi secretion system spike to shuttle passenger proteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043769/ https://www.ncbi.nlm.nih.gov/pubmed/32101557 http://dx.doi.org/10.1371/journal.pone.0228941 |
work_keys_str_mv | AT wettstadtsarah manipulatingthetypevisecretionsystemspiketoshuttlepassengerproteins AT fillouxalain manipulatingthetypevisecretionsystemspiketoshuttlepassengerproteins |