Cargando…

Automated structure discovery in atomic force microscopy

Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecules due to difficulties with interpretation of highl...

Descripción completa

Detalles Bibliográficos
Autores principales: Alldritt, Benjamin, Hapala, Prokop, Oinonen, Niko, Urtev, Fedor, Krejci, Ondrej, Federici Canova, Filippo, Kannala, Juho, Schulz, Fabian, Liljeroth, Peter, Foster, Adam S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043916/
https://www.ncbi.nlm.nih.gov/pubmed/32133405
http://dx.doi.org/10.1126/sciadv.aay6913
Descripción
Sumario:Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecules due to difficulties with interpretation of highly distorted AFM images originating from nonplanar molecules. Here, we develop a deep learning infrastructure that matches a set of AFM images with a unique descriptor characterizing the molecular configuration, allowing us to predict the molecular structure directly. We apply this methodology to resolve several distinct adsorption configurations of 1S-camphor on Cu(111) based on low-temperature AFM measurements. This approach will open the door to applying high-resolution AFM to a large variety of systems, for which routine atomic and chemical structural resolution on the level of individual objects/molecules would be a major breakthrough.