Cargando…
Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans
Delta-9-tetrahydrocannabinol (THC) is known to modulate immune response in peripheral blood cells. The mechanisms of THC’s effects on gene expression in human immune cells remains poorly understood. Combining a within-subject design with single cell transcriptome mapping, we report that THC acutely...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044203/ https://www.ncbi.nlm.nih.gov/pubmed/32103029 http://dx.doi.org/10.1038/s41598-020-59827-1 |
Sumario: | Delta-9-tetrahydrocannabinol (THC) is known to modulate immune response in peripheral blood cells. The mechanisms of THC’s effects on gene expression in human immune cells remains poorly understood. Combining a within-subject design with single cell transcriptome mapping, we report that THC acutely alters gene expression in 15,973 blood cells. We identified 294 transcriptome-wide significant genes among eight cell types including 69 common genes and 225 cell-type-specific genes affected by THC administration, including those genes involving in immune response, cytokine production, cell proliferation and apoptosis. We revealed distinct transcriptomic sub-clusters affected by THC in major immune cell types where THC perturbed cell-type-specific intracellular gene expression correlations. Gene set enrichment analysis further supports the findings of THC’s common and cell-type-specific effects on immune response and cell toxicity. This comprehensive single-cell transcriptomic profiling provides important insights into THC’s acute effects on immune function that may have important medical implications. |
---|