Cargando…
Impact of the Sub-Resting Membrane Potential on Accurate Inference in Spiking Neural Networks
Spiking neural networks (SNNs) are considered as the third generation of artificial neural networks, having the potential to improve the energy efficiency of conventional computing systems. Although the firing rate of a spiking neuron is an approximation of rectified linear unit (ReLU) activation in...
Autores principales: | Hwang, Sungmin, Chang, Jeesoo, Oh, Min-Hye, Lee, Jong-Ho, Park, Byung-Gook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044207/ https://www.ncbi.nlm.nih.gov/pubmed/32103126 http://dx.doi.org/10.1038/s41598-020-60572-8 |
Ejemplares similares
-
Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation
por: Hwang, Sungmin, et al.
Publicado: (2021) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
3D AND-Type Stacked Array for Neuromorphic Systems
por: Jang, Taejin, et al.
Publicado: (2020) -
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
por: Kungl, Akos F., et al.
Publicado: (2019) -
Neural spiking for causal inference and learning
por: Lansdell, Benjamin James, et al.
Publicado: (2023)