Cargando…
UHPLC-QTOF-MS/MS based phytochemical characterization and anti-hyperglycemic prospective of hydro-ethanolic leaf extract of Butea monosperma
Butea monosperma is one of the extensively used plants in traditional system of medicines for many therapeutic purposes. In this study, the antioxidant activity, α-glucosidase and α-amylase inhibition properties of freeze drying assisted ultrasonicated leaf extracts (hydro-ethanolic) of B. monosperm...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044436/ https://www.ncbi.nlm.nih.gov/pubmed/32103043 http://dx.doi.org/10.1038/s41598-020-60076-5 |
Sumario: | Butea monosperma is one of the extensively used plants in traditional system of medicines for many therapeutic purposes. In this study, the antioxidant activity, α-glucosidase and α-amylase inhibition properties of freeze drying assisted ultrasonicated leaf extracts (hydro-ethanolic) of B. monosperma have been investigated. The findings revealed that 60% ethanolic fraction exhibited high phenolic contents, total flavonoid contents, highest antioxidant activity, and promising α-glucosidase and α-amylase inhibitions. The UHPLC-QTOF-MS/MS analysis indicated the presence of notable metabolites of significant medicinal potential including apigenin, apigenin C-hexoside C-pentoside, apigenin C-hexoside C-hexoside, apigenin-6,8-di-C-pentoside and genistin etc., in B. monosperma leave extract. Docking studies were carried out to determine the possible role of each phytochemical present in leaf extract. Binding affinity data and interaction pattern of all the possible phytochemicals in leaf extract of B. monosperma revealed that they can inhibit α-amylase and α-glucosidase synergistically to prevent hyperglycemia. |
---|