Cargando…

A dataset for evaluating one-shot categorization of novel object classes

With the advent of deep convolutional neural networks, machines now rival humans in terms of object categorization. The neural networks solve categorization with a hierarchical organization that shares a striking resemblance to their biological counterpart, leading to their status as a standard mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgenstern, Yaniv, Schmidt, Filipp, Fleming, Roland W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044642/
https://www.ncbi.nlm.nih.gov/pubmed/32140517
http://dx.doi.org/10.1016/j.dib.2020.105302
Descripción
Sumario:With the advent of deep convolutional neural networks, machines now rival humans in terms of object categorization. The neural networks solve categorization with a hierarchical organization that shares a striking resemblance to their biological counterpart, leading to their status as a standard model of object recognition in biological vision. Despite training on thousands of images of object categories, however, machine-learning networks are poorer generalizers, often fooled by adversarial images with very simple image manipulations that humans easily distinguish as a false image. Humans, on the other hand, can generalize object classes from very few samples. Here we provide a dataset of novel object classifications in humans. We gathered thousands of crowd-sourced human responses to novel objects embedded either with 1 or 16 context sample(s). Human decisions and stimuli together have the potential to be re-used (1) as a tool to better understand the nature of the gap in category learning from few samples between human and machine, and (2) as a benchmark of generalization across machine learning networks.