Cargando…
Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts
Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (T...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044684/ https://www.ncbi.nlm.nih.gov/pubmed/32160708 http://dx.doi.org/10.1016/j.omtn.2020.01.023 |
_version_ | 1783501627310735360 |
---|---|
author | Vellichirammal, Neetha Nanoth Albahrani, Abrar Banwait, Jasjit K. Mishra, Nitish K. Li, You Roychoudhury, Shrabasti Kling, Mathew J. Mirza, Sameer Bhakat, Kishor K. Band, Vimla Joshi, Shantaram S. Guda, Chittibabu |
author_facet | Vellichirammal, Neetha Nanoth Albahrani, Abrar Banwait, Jasjit K. Mishra, Nitish K. Li, You Roychoudhury, Shrabasti Kling, Mathew J. Mirza, Sameer Bhakat, Kishor K. Band, Vimla Joshi, Shantaram S. Guda, Chittibabu |
author_sort | Vellichirammal, Neetha Nanoth |
collection | PubMed |
description | Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers. The majority of the recurrent non-canonical fusions found in our study are novel, unexplored, and exhibited highly variable profiles across cancers, with breast cancer and glioblastoma having the highest and lowest rates, respectively. Overall, 4,344 recurrent fusions were identified from TCGA in this study, of which 70% were novel. Additional analysis of 802 tumor-derived cell line transcriptome data across 20 cancers revealed significant variability in recurrent fusion profiles between primary tumors and corresponding cell lines. A subset of canonical and non-canonical fusions was validated by examining the structural variation evidence in whole-genome sequencing (WGS) data or by Sanger sequencing of fusion junctions. Several recurrent fusion genes identified in our study show promise for drug repurposing in basket trials and present opportunities for mechanistic studies. |
format | Online Article Text |
id | pubmed-7044684 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-70446842020-03-03 Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts Vellichirammal, Neetha Nanoth Albahrani, Abrar Banwait, Jasjit K. Mishra, Nitish K. Li, You Roychoudhury, Shrabasti Kling, Mathew J. Mirza, Sameer Bhakat, Kishor K. Band, Vimla Joshi, Shantaram S. Guda, Chittibabu Mol Ther Nucleic Acids Article Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers. The majority of the recurrent non-canonical fusions found in our study are novel, unexplored, and exhibited highly variable profiles across cancers, with breast cancer and glioblastoma having the highest and lowest rates, respectively. Overall, 4,344 recurrent fusions were identified from TCGA in this study, of which 70% were novel. Additional analysis of 802 tumor-derived cell line transcriptome data across 20 cancers revealed significant variability in recurrent fusion profiles between primary tumors and corresponding cell lines. A subset of canonical and non-canonical fusions was validated by examining the structural variation evidence in whole-genome sequencing (WGS) data or by Sanger sequencing of fusion junctions. Several recurrent fusion genes identified in our study show promise for drug repurposing in basket trials and present opportunities for mechanistic studies. American Society of Gene & Cell Therapy 2020-01-29 /pmc/articles/PMC7044684/ /pubmed/32160708 http://dx.doi.org/10.1016/j.omtn.2020.01.023 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Vellichirammal, Neetha Nanoth Albahrani, Abrar Banwait, Jasjit K. Mishra, Nitish K. Li, You Roychoudhury, Shrabasti Kling, Mathew J. Mirza, Sameer Bhakat, Kishor K. Band, Vimla Joshi, Shantaram S. Guda, Chittibabu Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title_full | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title_fullStr | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title_full_unstemmed | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title_short | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts |
title_sort | pan-cancer analysis reveals the diverse landscape of novel sense and antisense fusion transcripts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044684/ https://www.ncbi.nlm.nih.gov/pubmed/32160708 http://dx.doi.org/10.1016/j.omtn.2020.01.023 |
work_keys_str_mv | AT vellichirammalneethananoth pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT albahraniabrar pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT banwaitjasjitk pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT mishranitishk pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT liyou pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT roychoudhuryshrabasti pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT klingmathewj pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT mirzasameer pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT bhakatkishork pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT bandvimla pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT joshishantarams pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts AT gudachittibabu pancanceranalysisrevealsthediverselandscapeofnovelsenseandantisensefusiontranscripts |