Cargando…
Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage
Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044796/ https://www.ncbi.nlm.nih.gov/pubmed/32109675 http://dx.doi.org/10.1016/j.isci.2020.100903 |
Sumario: | Data-independent acquisition mass spectrometry (DIA-MS) is a powerful technique that enables relatively deep proteomic profiling with superior quantification reproducibility. DIA data mining predominantly relies on a spectral library of sufficient proteome coverage that, in most cases, is built on data-dependent acquisition-based analysis of the same sample. To expand the proteome coverage for a pre-determined protein family, we report herein on the construction of a hybrid spectral library that supplements a DIA experiment-derived library with a protein family-targeted virtual library predicted by deep learning. Leveraging this DIA hybrid library substantially deepens the coverage of three transmembrane protein families (G protein-coupled receptors, ion channels, and transporters) in mouse brain tissues with increases in protein identification of 37%–87% and peptide identification of 58%–161%. Moreover, of the 412 novel GPCR peptides exclusively identified with the DIA hybrid library strategy, 53.6% were validated as present in mouse brain tissues based on orthogonal experimental measurement. |
---|