Cargando…

A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability

Calcium (Ca(2+))-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca(2+)-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we exa...

Descripción completa

Detalles Bibliográficos
Autores principales: Konen, Lyndsey M., Wright, Amanda L., Royle, Gordon A., Morris, Gary P., Lau, Benjamin K., Seow, Patrick W., Zinn, Raphael, Milham, Luke T., Vaughan, Christopher W., Vissel, Bryce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045468/
https://www.ncbi.nlm.nih.gov/pubmed/32102661
http://dx.doi.org/10.1186/s13041-020-0545-1
Descripción
Sumario:Calcium (Ca(2+))-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca(2+)-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2(+/ECS(G))) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca(2+)-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2(+/ECS(G)) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca(2+)-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington’s disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer’s disease.