Cargando…

Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing

[Image: see text] We present a numerical model to study the dynamic behaviors and heat conduction of freezing liquid droplets based on the MDPDE method (many-body dissipative particle dynamics with energy conservation configurations). In this model, the freezing processes involved in cooling, recale...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liwei, Dai, Jinzhao, Hao, Pengfei, He, Feng, Zhang, Xiwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045502/
https://www.ncbi.nlm.nih.gov/pubmed/32118147
http://dx.doi.org/10.1021/acsomega.9b03415
Descripción
Sumario:[Image: see text] We present a numerical model to study the dynamic behaviors and heat conduction of freezing liquid droplets based on the MDPDE method (many-body dissipative particle dynamics with energy conservation configurations). In this model, the freezing processes involved in cooling, recalescence, and nucleation are considered. A new scaling method was developed to connect the mesoscopic MDPDE coefficients and macrothermal conductivity. The freezing of water droplets on cold surfaces with different wettabilities was simulated. Both the evolution of temperature and ice–liquid interface movement showed close agreement with the experimental data. We discuss the formation of a pointy tip on the top of an ice-drop and nucleation and growth during the recalescence stage. The rapid expansion of the recalescence region and the growth of the solid-phase region were calculated numerically, and this showed that the nuclei distribution of the two processes were completely different. The MDPDE model can not only predict the freezing time and shape deformation of ice-drops but also the nuclei formation and crystal growth during solidification. This study provides a useful tool for deicing material design.