Cargando…

Facile Synthesis of Ag/Pd Nanoparticle-Loaded Poly(ethylene imine) Composite Hydrogels with Highly Efficient Catalytic Reduction of 4-Nitrophenol

[Image: see text] Poly(ethylene imine) (PEI) has abundant amino groups in a macromolecular chain and can be used as a graft source for metal nanocomposites, which shows excellent ability to form stable complexes with heavy metal ions. In this work, a simple and convenient method was used to make PEI...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yao, Yin, Juanjuan, Liu, Shufeng, Wang, Yuying, Li, Bingfan, Jiao, Tifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045507/
https://www.ncbi.nlm.nih.gov/pubmed/32118188
http://dx.doi.org/10.1021/acsomega.9b04408
Descripción
Sumario:[Image: see text] Poly(ethylene imine) (PEI) has abundant amino groups in a macromolecular chain and can be used as a graft source for metal nanocomposites, which shows excellent ability to form stable complexes with heavy metal ions. In this work, a simple and convenient method was used to make PEI into a stable hydrogel with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide and subsequently coprecipitate with silver nitrate solution or palladium chloride solution to form metal-loaded composite hydrogels. In addition, the characterizations of composite hydrogels were investigated by scanning electron microscopy, specific surface area tests (Brunauer–Emmett–Teller), X-ray photoelectron spectroscopy, and ultraviolet spectroscopy. The properties of composite hydrogels on the catalytic reduction of 4-nitrophenol were studied. The results showed that the composite hydrogels could be easily separated from the water environment, which indicated the large-scale potential application in organic catalytic degradation and wastewater treatment.