Cargando…
Prediction of Nanofluid Temperature Inside the Cavity by Integration of Grid Partition Clustering Categorization of a Learning Structure with the Fuzzy System
[Image: see text] In this study, a quadratic cavity is simulated using computational fluid dynamics (CFD). The simulated cavity includes nanofluids containing copper (Cu) nanoparticles. The L-shaped thermal element exists in this cavity to produce heat distribution along with the domain. Results suc...
Autores principales: | Nabipour, Narjes, Babanezhad, Meisam, Taghvaie Nakhjiri, Ali, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045517/ https://www.ncbi.nlm.nih.gov/pubmed/32118172 http://dx.doi.org/10.1021/acsomega.9b03911 |
Ejemplares similares
-
Changes in the Number of Membership Functions for
Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition
Clustering of the ANFIS Method
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Prediction of Nanofluid Characteristics and Flow Pattern
on Artificial Differential Evolution Learning Nodes and Fuzzy Framework
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020)