Cargando…
Machine Learning-Based Prediction of Crystal Systems and Space Groups from Inorganic Materials Compositions
[Image: see text] Structural information of materials such as the crystal systems and space groups are highly useful for analyzing their physical properties. However, the enormous composition space of materials makes experimental X-ray diffraction (XRD) or first-principle-based structure determinati...
Autores principales: | Zhao, Yong, Cui, Yuxin, Xiong, Zheng, Jin, Jing, Liu, Zhonghao, Dong, Rongzhi, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045551/ https://www.ncbi.nlm.nih.gov/pubmed/32118175 http://dx.doi.org/10.1021/acsomega.9b04012 |
Ejemplares similares
-
Mlatticeabc: Generic Lattice Constant Prediction of
Crystal Materials Using Machine Learning
por: Li, Yuxin, et al.
Publicado: (2021) -
Deep Learning-Based
Prediction of Contact Maps and
Crystal Structures of Inorganic Materials
por: Hu, Jianjun, et al.
Publicado: (2023) -
On the crystal chemistry of inorganic nitrides: crystal-chemical parameters, bonding behavior, and opportunities in the exploration of their compositional space
por: Gagné, Olivier C.
Publicado: (2021) -
Data-centric approach to improve machine learning models for inorganic materials
por: Bartel, Christopher J.
Publicado: (2021) -
Predicting Synthesizability
using Machine Learning
on Databases of Existing Inorganic Materials
por: Zhu, Ruiming, et al.
Publicado: (2023)