Cargando…

Light-Emitting Multifunctional Maleic Acid-co-2-(N-(hydroxymethyl)acrylamido)succinic Acid-co-N-(hydroxymethyl)acrylamide for Fe(III) Sensing, Removal, and Cell Imaging

[Image: see text] The intrinsically fluorescent highly hydrophilic multifunctional aliphatic terpolymer, maleic acid (MA)-co-2-(N-(hydroxymethyl)acrylamido)succinic acid (NHASA)-co-N-(hydroxymethyl)acrylamide (NHMA), that is, 1, was designed and synthesized via C–C/N–C-coupled in situ allocation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitra, Madhushree, Mahapatra, Manas, Dutta, Arnab, Chattopadhyay, Pijush Kanti, Deb, Mousumi, Deb Roy, Joy Sankar, Roy, Chandan, Banerjee, Snehasis, Singha, Nayan Ranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045568/
https://www.ncbi.nlm.nih.gov/pubmed/32118148
http://dx.doi.org/10.1021/acsomega.9b03536
Descripción
Sumario:[Image: see text] The intrinsically fluorescent highly hydrophilic multifunctional aliphatic terpolymer, maleic acid (MA)-co-2-(N-(hydroxymethyl)acrylamido)succinic acid (NHASA)-co-N-(hydroxymethyl)acrylamide (NHMA), that is, 1, was designed and synthesized via C–C/N–C-coupled in situ allocation of a fluorophore monomer, that is, NHASA, composed of amido and carboxylic acid functionalities in the polymerization of two nonemissive MA and NHMA. The scalable and reusable intrinsically fluorescent biocompatible 1 was suitable for sensing and high-performance adsorptive exclusion of Fe(III), along with the imaging of Madin–Darby canine kidney cells. The structure of 1, in situ fluorophore monomer, aggregation-induced enhanced emission, cell-imaging ability, and superadsorption mechanism were studied via microstructural analyses using (1)H/(13)C NMR, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, solid-state fluorescence, fluorescence lifetime, and fluorescence imaging, along with measuring kinetics, isotherms, and thermodynamic parameters. The location, electronic structures, and geometries of the fluorophore and absorption and emission properties of 1 were investigated using density functional theory and natural transition orbital analyses. The limit of detection and the maximum adsorption capacity were 2.45 × 10(–7) M and 542.81 mg g(–1), respectively.