Cargando…

The effects of di(2-ethylhexyl) phthalate exposure in women with polycystic ovary syndrome undergoing in vitro fertilization

OBJECTIVES: Di(2-ethylhexyl) phthalate (DEHP) is a common endocrine-disrupting chemical, which has potential reproductive toxicity. This study aimed to explore the effects of DEHP exposure in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization. METHODS: In this case-control...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yue, Zhang, Qing, Pan, Jie-Xue, Wang, Fang-Fang, Qu, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045688/
https://www.ncbi.nlm.nih.gov/pubmed/31709857
http://dx.doi.org/10.1177/0300060519876467
Descripción
Sumario:OBJECTIVES: Di(2-ethylhexyl) phthalate (DEHP) is a common endocrine-disrupting chemical, which has potential reproductive toxicity. This study aimed to explore the effects of DEHP exposure in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization. METHODS: In this case-control study, DEHP levels in follicular fluid (FF) of women with PCOS (n = 56) and controls (n = 51) were measured. The in vitro effects of DEHP exposure on primary-cultured human granulosa cells (GCs) and a steroidogenic human granulosa-like tumor cell line (KGN cells) were analyzed. RESULTS: Concentrations of DEHP in FF were significantly higher in women with PCOS than in controls. The clinical pregnancy rate was significantly lower in women with PCOS with high levels of DEHP than in controls. The levels of androgens produced by human GCs were significantly increased following DEHP exposure. Compared with controls, DEHP-treated human GCs and KGN cells showed significantly lower viability, cell cycle arrest, higher apoptosis, and altered expression of apoptosis-related genes. CONCLUSION: Women with PCOS are exposed to increased levels of DEHP in follicles, which may be associated with pregnancy loss following in vitro fertilization. DEHP may disrupt steroid production, balance in cellular proliferation, and apoptosis in human granulosa cells.