Cargando…
Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
In this study, we proposed an automated method based on convolutional neural network (CNN) for nasopharyngeal carcinoma (NPC) segmentation on dual-sequence magnetic resonance imaging (MRI). T1-weighted (T1W) and T2-weighted (T2W) MRI images were collected from 44 NPC patients. We developed a dense c...
Autores principales: | Ye, Yufeng, Cai, Zongyou, Huang, Bin, He, Yan, Zeng, Ping, Zou, Guorong, Deng, Wei, Chen, Hanwei, Huang, Bingsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045897/ https://www.ncbi.nlm.nih.gov/pubmed/32154168 http://dx.doi.org/10.3389/fonc.2020.00166 |
Ejemplares similares
-
Fully Automated Segmentation of Lower Extremity Deep Vein Thrombosis Using Convolutional Neural Network
por: Huang, Chen, et al.
Publicado: (2019) -
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
por: Zhang, Jiajing, et al.
Publicado: (2022) -
Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network
por: Li, Qiaoliang, et al.
Publicado: (2018) -
Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network
por: Zabihollahy, Fatemeh, et al.
Publicado: (2022) -
Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
por: Liu, Xiang, et al.
Publicado: (2021)