Cargando…

Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental p...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Soham, Liu, Chia-Hao, Jensen, Kirsten M. Ø., Juhás, Pavol, Lee, Jennifer D., Tofanelli, Marcus, Ackerson, Christopher J., Murray, Christopher B., Billinge, Simon J. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045905/
https://www.ncbi.nlm.nih.gov/pubmed/31908346
http://dx.doi.org/10.1107/S2053273319013214
_version_ 1783501868058542080
author Banerjee, Soham
Liu, Chia-Hao
Jensen, Kirsten M. Ø.
Juhás, Pavol
Lee, Jennifer D.
Tofanelli, Marcus
Ackerson, Christopher J.
Murray, Christopher B.
Billinge, Simon J. L.
author_facet Banerjee, Soham
Liu, Chia-Hao
Jensen, Kirsten M. Ø.
Juhás, Pavol
Lee, Jennifer D.
Tofanelli, Marcus
Ackerson, Christopher J.
Murray, Christopher B.
Billinge, Simon J. L.
author_sort Banerjee, Soham
collection PubMed
description A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles.
format Online
Article
Text
id pubmed-7045905
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-70459052020-03-06 Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data Banerjee, Soham Liu, Chia-Hao Jensen, Kirsten M. Ø. Juhás, Pavol Lee, Jennifer D. Tofanelli, Marcus Ackerson, Christopher J. Murray, Christopher B. Billinge, Simon J. L. Acta Crystallogr A Found Adv Research Papers A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles. International Union of Crystallography 2020-01-01 /pmc/articles/PMC7045905/ /pubmed/31908346 http://dx.doi.org/10.1107/S2053273319013214 Text en © Banerjee et al. 2020 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/
spellingShingle Research Papers
Banerjee, Soham
Liu, Chia-Hao
Jensen, Kirsten M. Ø.
Juhás, Pavol
Lee, Jennifer D.
Tofanelli, Marcus
Ackerson, Christopher J.
Murray, Christopher B.
Billinge, Simon J. L.
Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title_full Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title_fullStr Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title_full_unstemmed Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title_short Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
title_sort cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045905/
https://www.ncbi.nlm.nih.gov/pubmed/31908346
http://dx.doi.org/10.1107/S2053273319013214
work_keys_str_mv AT banerjeesoham clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT liuchiahao clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT jensenkirstenmø clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT juhaspavol clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT leejenniferd clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT tofanellimarcus clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT ackersonchristopherj clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT murraychristopherb clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata
AT billingesimonjl clustermininganapproachfordeterminingcorestructuresofmetallicnanoparticlesfromatomicpairdistributionfunctiondata