Cargando…
Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil
A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046235/ https://www.ncbi.nlm.nih.gov/pubmed/32107491 http://dx.doi.org/10.1371/journal.pone.0229435 |
_version_ | 1783501926849052672 |
---|---|
author | Gonzalez, Carmen Silva-Ramirez, Ana Sonia Navarro-Tovar, Gabriela Barrios-Capuchino, Juan Jesus Rocha-Uribe, Alejandro |
author_facet | Gonzalez, Carmen Silva-Ramirez, Ana Sonia Navarro-Tovar, Gabriela Barrios-Capuchino, Juan Jesus Rocha-Uribe, Alejandro |
author_sort | Gonzalez, Carmen |
collection | PubMed |
description | A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO. |
format | Online Article Text |
id | pubmed-7046235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70462352020-03-09 Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil Gonzalez, Carmen Silva-Ramirez, Ana Sonia Navarro-Tovar, Gabriela Barrios-Capuchino, Juan Jesus Rocha-Uribe, Alejandro PLoS One Research Article A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO. Public Library of Science 2020-02-27 /pmc/articles/PMC7046235/ /pubmed/32107491 http://dx.doi.org/10.1371/journal.pone.0229435 Text en © 2020 Gonzalez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gonzalez, Carmen Silva-Ramirez, Ana Sonia Navarro-Tovar, Gabriela Barrios-Capuchino, Juan Jesus Rocha-Uribe, Alejandro Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title | Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title_full | Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title_fullStr | Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title_full_unstemmed | Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title_short | Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
title_sort | effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046235/ https://www.ncbi.nlm.nih.gov/pubmed/32107491 http://dx.doi.org/10.1371/journal.pone.0229435 |
work_keys_str_mv | AT gonzalezcarmen effectofthedoublebondconjugationonthevascularphysiologyandnitricoxideproductionofisomersofeicosapentaenoicanddocosahexaenoicacidspreparedfromsharkoil AT silvaramirezanasonia effectofthedoublebondconjugationonthevascularphysiologyandnitricoxideproductionofisomersofeicosapentaenoicanddocosahexaenoicacidspreparedfromsharkoil AT navarrotovargabriela effectofthedoublebondconjugationonthevascularphysiologyandnitricoxideproductionofisomersofeicosapentaenoicanddocosahexaenoicacidspreparedfromsharkoil AT barrioscapuchinojuanjesus effectofthedoublebondconjugationonthevascularphysiologyandnitricoxideproductionofisomersofeicosapentaenoicanddocosahexaenoicacidspreparedfromsharkoil AT rochauribealejandro effectofthedoublebondconjugationonthevascularphysiologyandnitricoxideproductionofisomersofeicosapentaenoicanddocosahexaenoicacidspreparedfromsharkoil |