Cargando…

A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes

Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebersoll, Samantha, Bogacz, Marta, Günter, Lina M, Dick, Tobias P, Krauth-Siegel, R Luise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046469/
https://www.ncbi.nlm.nih.gov/pubmed/32003744
http://dx.doi.org/10.7554/eLife.53227
_version_ 1783501951878561792
author Ebersoll, Samantha
Bogacz, Marta
Günter, Lina M
Dick, Tobias P
Krauth-Siegel, R Luise
author_facet Ebersoll, Samantha
Bogacz, Marta
Günter, Lina M
Dick, Tobias P
Krauth-Siegel, R Luise
author_sort Ebersoll, Samantha
collection PubMed
description Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single mitochondrion of these parasites has remained largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes the cytosolic, but only partially affects the mitochondrial sensor response to H(2)O(2). This strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, oxidoreductase.
format Online
Article
Text
id pubmed-7046469
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-70464692020-03-02 A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes Ebersoll, Samantha Bogacz, Marta Günter, Lina M Dick, Tobias P Krauth-Siegel, R Luise eLife Biochemistry and Chemical Biology Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single mitochondrion of these parasites has remained largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes the cytosolic, but only partially affects the mitochondrial sensor response to H(2)O(2). This strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, oxidoreductase. eLife Sciences Publications, Ltd 2020-01-31 /pmc/articles/PMC7046469/ /pubmed/32003744 http://dx.doi.org/10.7554/eLife.53227 Text en © 2020, Ebersoll et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Ebersoll, Samantha
Bogacz, Marta
Günter, Lina M
Dick, Tobias P
Krauth-Siegel, R Luise
A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title_full A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title_fullStr A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title_full_unstemmed A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title_short A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
title_sort tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046469/
https://www.ncbi.nlm.nih.gov/pubmed/32003744
http://dx.doi.org/10.7554/eLife.53227
work_keys_str_mv AT ebersollsamantha atryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT bogaczmarta atryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT gunterlinam atryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT dicktobiasp atryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT krauthsiegelrluise atryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT ebersollsamantha tryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT bogaczmarta tryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT gunterlinam tryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT dicktobiasp tryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes
AT krauthsiegelrluise tryparedoxincoupledbiosensorrevealsamitochondrialtrypanothionemetabolismintrypanosomes