Cargando…
Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction
Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in wh...
Autores principales: | Gliozzo, Jessica, Perlasca, Paolo, Mesiti, Marco, Casiraghi, Elena, Vallacchi, Viviana, Vergani, Elisabetta, Frasca, Marco, Grossi, Giuliano, Petrini, Alessandro, Re, Matteo, Paccanaro, Alberto, Valentini, Giorgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046773/ https://www.ncbi.nlm.nih.gov/pubmed/32107391 http://dx.doi.org/10.1038/s41598-020-60235-8 |
Ejemplares similares
-
A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks
por: Frasca, Marco, et al.
Publicado: (2018) -
UNIPred-Web: a web tool for the integration and visualization of biomolecular networks for protein function prediction
por: Perlasca, Paolo, et al.
Publicado: (2019) -
Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-based graphical tools
por: Perlasca, Paolo, et al.
Publicado: (2020) -
Heterogeneous data integration methods for patient similarity networks
por: Gliozzo, Jessica, et al.
Publicado: (2022) -
parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants
por: Petrini, Alessandro, et al.
Publicado: (2020)