Cargando…
Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts
Mycobacterium tuberculosis (M.tb) is likely the most successful human pathogen, capable of evading protective host immune responses and driving metabolic changes to support its own survival and growth. Ineffective innate and adaptive immune responses inhibit effective clearance of the bacteria from...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047144/ https://www.ncbi.nlm.nih.gov/pubmed/32113158 http://dx.doi.org/10.1016/j.ebiom.2020.102670 |
_version_ | 1783502082098069504 |
---|---|
author | Kotzé, Leigh A. Young, Carly Leukes, Vinzeigh N. John, Vini Fang, Zhuo Walzl, Gerhard Lutz, Manfred B. du Plessis, Nelita |
author_facet | Kotzé, Leigh A. Young, Carly Leukes, Vinzeigh N. John, Vini Fang, Zhuo Walzl, Gerhard Lutz, Manfred B. du Plessis, Nelita |
author_sort | Kotzé, Leigh A. |
collection | PubMed |
description | Mycobacterium tuberculosis (M.tb) is likely the most successful human pathogen, capable of evading protective host immune responses and driving metabolic changes to support its own survival and growth. Ineffective innate and adaptive immune responses inhibit effective clearance of the bacteria from the human host, resulting in the progression to active TB disease. Many regulatory mechanisms exist to prevent immunopathology, however, chronic infections result in the overproduction of regulatory myeloid cells, like myeloid-derived suppressor cells (MDSC), which actively suppress protective host T lymphocyte responses among other immunosuppressive mechanisms. The mechanisms of M.tb internalization by MDSC and the involvement of host-derived lipid acquisition, have not been fully elucidated. Targeted research aimed at investigating MDSC impact on phagocytic control of M.tb, would be advantageous to our collective anti-TB arsenal. In this review we propose a mechanism by which M.tb may be internalized by MDSC and survive via the manipulation of host-derived lipid sources. |
format | Online Article Text |
id | pubmed-7047144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-70471442020-03-05 Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts Kotzé, Leigh A. Young, Carly Leukes, Vinzeigh N. John, Vini Fang, Zhuo Walzl, Gerhard Lutz, Manfred B. du Plessis, Nelita EBioMedicine Review Mycobacterium tuberculosis (M.tb) is likely the most successful human pathogen, capable of evading protective host immune responses and driving metabolic changes to support its own survival and growth. Ineffective innate and adaptive immune responses inhibit effective clearance of the bacteria from the human host, resulting in the progression to active TB disease. Many regulatory mechanisms exist to prevent immunopathology, however, chronic infections result in the overproduction of regulatory myeloid cells, like myeloid-derived suppressor cells (MDSC), which actively suppress protective host T lymphocyte responses among other immunosuppressive mechanisms. The mechanisms of M.tb internalization by MDSC and the involvement of host-derived lipid acquisition, have not been fully elucidated. Targeted research aimed at investigating MDSC impact on phagocytic control of M.tb, would be advantageous to our collective anti-TB arsenal. In this review we propose a mechanism by which M.tb may be internalized by MDSC and survive via the manipulation of host-derived lipid sources. Elsevier 2020-02-26 /pmc/articles/PMC7047144/ /pubmed/32113158 http://dx.doi.org/10.1016/j.ebiom.2020.102670 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Kotzé, Leigh A. Young, Carly Leukes, Vinzeigh N. John, Vini Fang, Zhuo Walzl, Gerhard Lutz, Manfred B. du Plessis, Nelita Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title | Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title_full | Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title_fullStr | Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title_full_unstemmed | Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title_short | Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts |
title_sort | mycobacterium tuberculosis and myeloid-derived suppressor cells: insights into caveolin rich lipid rafts |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047144/ https://www.ncbi.nlm.nih.gov/pubmed/32113158 http://dx.doi.org/10.1016/j.ebiom.2020.102670 |
work_keys_str_mv | AT kotzeleigha mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT youngcarly mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT leukesvinzeighn mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT johnvini mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT fangzhuo mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT walzlgerhard mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT lutzmanfredb mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts AT duplessisnelita mycobacteriumtuberculosisandmyeloidderivedsuppressorcellsinsightsintocaveolinrichlipidrafts |