Cargando…

MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model

Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xi, Zhang, Hui-Yuan, He, Zhi-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047781/
https://www.ncbi.nlm.nih.gov/pubmed/31960813
http://dx.doi.org/10.4103/1673-5374.272612
_version_ 1783502178687647744
author Lu, Xi
Zhang, Hui-Yuan
He, Zhi-Yi
author_facet Lu, Xi
Zhang, Hui-Yuan
He, Zhi-Yi
author_sort Lu, Xi
collection PubMed
description Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments were conducted to test this hypothesis. In vivo experiments: collagenase type VII was injected into the basal ganglia of adult Sprague-Dawley rats to establish an intracerebral hemorrhage model. MiR-181c mimic or inhibitor was injected in situ 4 hours after intracerebral hemorrhage. Neurological functional defects (neurological severity scores) were assessed 1, 7, and 14 days after model establishment. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and western blot assay were conducted 14 days after model establishment. In vitro experiments: PC12 cells were cultured under oxygen-glucose deprivation, and hemins were added to simulate intracerebral hemorrhage in vitro. MiR-181c mimic or inhibitor was added to regulate miR-181c expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, luciferase reporter system, and western blot assay were performed. Experimental results revealed differences in miR-181c expression in brain tissues of both patients and rats with cerebral hemorrhage. In addition, in vitro experiments found that miR-181c overexpression could upregulate the Bcl-2/Bax ratio to inhibit apoptosis, while inhibition of miR-181c expression could reduce the Bcl-2/Bax ratio and aggravate apoptosis of cells. Regulation of apoptosis occurred through the phosphoinositide 3 kinase (PI3K)/Akt pathway by targeting of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Higher miR-181c overexpression correlated with lower neurological severity scores, indicating better recovery of neurological function. In conclusion, miR-181c affects the prognosis of intracerebral hemorrhage by regulating apoptosis, and these effects might be directly mediated and regulated by targeting of the PTEN\PI3K/Akt pathway and Bcl-2/Bax ratio. Furthermore, these results indicated that miR-181c played a neuroprotective role in intracerebral hemorrhage by regulating apoptosis of nerve cells, thus providing a potential target for the prevention and treatment of intracerebral hemorrhage. Testing of human serum was authorized by the Ethics Committee of China Medical University (No. 2012-38-1) on February 20, 2012. The protocol was registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR-COC-17013559). The animal study was approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. 2017008) on March 8, 2017.
format Online
Article
Text
id pubmed-7047781
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-70477812020-03-13 MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model Lu, Xi Zhang, Hui-Yuan He, Zhi-Yi Neural Regen Res Research Article Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments were conducted to test this hypothesis. In vivo experiments: collagenase type VII was injected into the basal ganglia of adult Sprague-Dawley rats to establish an intracerebral hemorrhage model. MiR-181c mimic or inhibitor was injected in situ 4 hours after intracerebral hemorrhage. Neurological functional defects (neurological severity scores) were assessed 1, 7, and 14 days after model establishment. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and western blot assay were conducted 14 days after model establishment. In vitro experiments: PC12 cells were cultured under oxygen-glucose deprivation, and hemins were added to simulate intracerebral hemorrhage in vitro. MiR-181c mimic or inhibitor was added to regulate miR-181c expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, luciferase reporter system, and western blot assay were performed. Experimental results revealed differences in miR-181c expression in brain tissues of both patients and rats with cerebral hemorrhage. In addition, in vitro experiments found that miR-181c overexpression could upregulate the Bcl-2/Bax ratio to inhibit apoptosis, while inhibition of miR-181c expression could reduce the Bcl-2/Bax ratio and aggravate apoptosis of cells. Regulation of apoptosis occurred through the phosphoinositide 3 kinase (PI3K)/Akt pathway by targeting of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Higher miR-181c overexpression correlated with lower neurological severity scores, indicating better recovery of neurological function. In conclusion, miR-181c affects the prognosis of intracerebral hemorrhage by regulating apoptosis, and these effects might be directly mediated and regulated by targeting of the PTEN\PI3K/Akt pathway and Bcl-2/Bax ratio. Furthermore, these results indicated that miR-181c played a neuroprotective role in intracerebral hemorrhage by regulating apoptosis of nerve cells, thus providing a potential target for the prevention and treatment of intracerebral hemorrhage. Testing of human serum was authorized by the Ethics Committee of China Medical University (No. 2012-38-1) on February 20, 2012. The protocol was registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR-COC-17013559). The animal study was approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. 2017008) on March 8, 2017. Wolters Kluwer - Medknow 2020-01-09 /pmc/articles/PMC7047781/ /pubmed/31960813 http://dx.doi.org/10.4103/1673-5374.272612 Text en Copyright: © Neural Regeneration Research http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Research Article
Lu, Xi
Zhang, Hui-Yuan
He, Zhi-Yi
MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title_full MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title_fullStr MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title_full_unstemmed MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title_short MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model
title_sort microrna-181c provides neuroprotection in an intracerebral hemorrhage model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047781/
https://www.ncbi.nlm.nih.gov/pubmed/31960813
http://dx.doi.org/10.4103/1673-5374.272612
work_keys_str_mv AT luxi microrna181cprovidesneuroprotectioninanintracerebralhemorrhagemodel
AT zhanghuiyuan microrna181cprovidesneuroprotectioninanintracerebralhemorrhagemodel
AT hezhiyi microrna181cprovidesneuroprotectioninanintracerebralhemorrhagemodel