Cargando…
A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection
OBJECTIVE: Machine learning methods may have better or comparable predictive ability than traditional analysis. We explore machine learning methods to predict the likelihood of acute kidney injury after liver cancer resection. METHODS: This is a secondary analysis cohort study. We reviewed data from...
Autores principales: | Lei, Lei, Wang, Ying, Xue, Qiong, Tong, Jianhua, Zhou, Cheng-Mao, Yang, Jian-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047869/ https://www.ncbi.nlm.nih.gov/pubmed/32140301 http://dx.doi.org/10.7717/peerj.8583 |
Ejemplares similares
-
Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study
por: Islam, Saima Sharleen, et al.
Publicado: (2022) -
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020) -
Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms
por: Reshi, Aijaz Ahmad, et al.
Publicado: (2021) -
Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak
por: Naeem, Muhammad, et al.
Publicado: (2021) -
Predicting liver cancer on epigenomics data using machine learning
por: Vekariya, Vishalkumar, et al.
Publicado: (2022)