Cargando…
Autophagy inhibition in 3T3-L1 adipocytes breaks the crosstalk with tumor cells by suppression of adipokine production
Several studies have revealed the functional importance of autophagy in both adipogenesis and carcinogenesis. Here, we investigated autophagy as a link between tumorigenesis and adipogenesis using 3T3-L1 cells, which have been shown to closely mimic the in vivo differentiation process. The relative...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048175/ https://www.ncbi.nlm.nih.gov/pubmed/32158612 http://dx.doi.org/10.1080/19768354.2019.1700159 |
Sumario: | Several studies have revealed the functional importance of autophagy in both adipogenesis and carcinogenesis. Here, we investigated autophagy as a link between tumorigenesis and adipogenesis using 3T3-L1 cells, which have been shown to closely mimic the in vivo differentiation process. The relative levels of LC3-II/I showed that autophagy was the highest after 4–6 days of initiation of differentiation and it diminished thereafter. Furthermore, chloroquine (CQ), a late autophagy inhibitor, effectively inhibited adipogenic differentiation of 3T3-L1 cells, suggesting that autophagy may have a positive impact on adipogenic differentiation. Notably, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that CQ completely blocked the mRNA expression of three adipokines (adiponectin, leptin, and peroxisome proliferator-activated receptor-γ (PPARγ)), which increased proportionally to adipocyte differentiation. Using adipokine antibody arrays, we also found that among 38 adipokines examined, 6 adipokines were significantly differentially regulated in mature adipocytes compared to those in preadipocytes. A comparative analysis of adipokine production revealed that CQ-treated adipocytes displayed a profile similar to that of preadipocytes. Subsequently, CQ treatment significantly inhibited the migration capacity of v-Ha-ras-transformed cells in both 3T3-L1 adipocyte-conditioned medium and co-culture with 3T3-L1 using a transwell plate. Taken together, our results suggest that autophagy inhibition blocks the production of mediators relevant to the adipogenic process and may significantly contribute to reducing obesity-related cancer risk. |
---|