Cargando…
Early prediction of antigenic transitions for influenza A/H3N2
Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048310/ https://www.ncbi.nlm.nih.gov/pubmed/32069282 http://dx.doi.org/10.1371/journal.pcbi.1007683 |
_version_ | 1783502276951801856 |
---|---|
author | Castro, Lauren A. Bedford, Trevor Ancel Meyers, Lauren |
author_facet | Castro, Lauren A. Bedford, Trevor Ancel Meyers, Lauren |
author_sort | Castro, Lauren A. |
collection | PubMed |
description | Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions. The eventual fate of a new cluster depends on its initial epidemiological growth rate––which is a function of mutational load and population susceptibility to the cluster––along with the variance in growth rate across co-circulating viruses. Logistic regression can predict whether a cluster at 5% relative frequency will eventually succeed with ~80% sensitivity, providing up to eight months advance warning. As a cluster expands, the predictions improve while the lead-time for vaccine development and other interventions decreases. However, attempts to make comparable predictions from 12 years of empirical influenza surveillance data, which are far sparser and more coarse-grained, achieve only 56% sensitivity. By expanding influenza surveillance to obtain more granular estimates of the frequencies of and population-wide susceptibility to emerging viruses, we can better anticipate major antigenic transitions. This provides added incentives for accelerating the vaccine production cycle to reduce the lead time required for strain selection. |
format | Online Article Text |
id | pubmed-7048310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70483102020-03-09 Early prediction of antigenic transitions for influenza A/H3N2 Castro, Lauren A. Bedford, Trevor Ancel Meyers, Lauren PLoS Comput Biol Research Article Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions. The eventual fate of a new cluster depends on its initial epidemiological growth rate––which is a function of mutational load and population susceptibility to the cluster––along with the variance in growth rate across co-circulating viruses. Logistic regression can predict whether a cluster at 5% relative frequency will eventually succeed with ~80% sensitivity, providing up to eight months advance warning. As a cluster expands, the predictions improve while the lead-time for vaccine development and other interventions decreases. However, attempts to make comparable predictions from 12 years of empirical influenza surveillance data, which are far sparser and more coarse-grained, achieve only 56% sensitivity. By expanding influenza surveillance to obtain more granular estimates of the frequencies of and population-wide susceptibility to emerging viruses, we can better anticipate major antigenic transitions. This provides added incentives for accelerating the vaccine production cycle to reduce the lead time required for strain selection. Public Library of Science 2020-02-18 /pmc/articles/PMC7048310/ /pubmed/32069282 http://dx.doi.org/10.1371/journal.pcbi.1007683 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Castro, Lauren A. Bedford, Trevor Ancel Meyers, Lauren Early prediction of antigenic transitions for influenza A/H3N2 |
title | Early prediction of antigenic transitions for influenza A/H3N2 |
title_full | Early prediction of antigenic transitions for influenza A/H3N2 |
title_fullStr | Early prediction of antigenic transitions for influenza A/H3N2 |
title_full_unstemmed | Early prediction of antigenic transitions for influenza A/H3N2 |
title_short | Early prediction of antigenic transitions for influenza A/H3N2 |
title_sort | early prediction of antigenic transitions for influenza a/h3n2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048310/ https://www.ncbi.nlm.nih.gov/pubmed/32069282 http://dx.doi.org/10.1371/journal.pcbi.1007683 |
work_keys_str_mv | AT castrolaurena earlypredictionofantigenictransitionsforinfluenzaah3n2 AT bedfordtrevor earlypredictionofantigenictransitionsforinfluenzaah3n2 AT ancelmeyerslauren earlypredictionofantigenictransitionsforinfluenzaah3n2 |