Cargando…
An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
In phenotype prediction the physical characteristics of an organism are predicted from knowledge of its genotype and environment. Such studies, often called genome-wide association studies, are of the highest societal importance, as they are of central importance to medicine, crop-breeding, etc. We...
Autores principales: | Grinberg, Nastasiya F., Orhobor, Oghenejokpeme I., King, Ross D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048706/ https://www.ncbi.nlm.nih.gov/pubmed/32174648 http://dx.doi.org/10.1007/s10994-019-05848-5 |
Ejemplares similares
-
Transformational machine learning: Learning how to learn from many related scientific problems
por: Olier, Ivan, et al.
Publicado: (2021) -
Generating Explainable and Effective Data Descriptors Using Relational Learning: Application to Cancer Biology
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
Federated Ensemble Regression Using Classification
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
A simple spatial extension to the extended connectivity interaction features for binding affinity prediction
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2022) -
Protein–ligand binding affinity prediction exploiting sequence constituent homology
por: Abdel-Rehim, Abbi, et al.
Publicado: (2023)