Cargando…
Giant Zeeman-type spin splitting of free electron/hole states on quasi-2D perovskite niobates: a theoretical prediction
We study the spin-orbit interaction of two-dimensional electron/hole gas (2DEGs/2DHGs) on quasi-2D potassium niobates (KNs) via first-principles calculations. The strong surface polarity changes the free surface states from 2DEGs to 2DHGs. The in-plane dipole maintained on 2D models leads to giant Z...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048772/ https://www.ncbi.nlm.nih.gov/pubmed/32111910 http://dx.doi.org/10.1038/s41598-020-60653-8 |
Sumario: | We study the spin-orbit interaction of two-dimensional electron/hole gas (2DEGs/2DHGs) on quasi-2D potassium niobates (KNs) via first-principles calculations. The strong surface polarity changes the free surface states from 2DEGs to 2DHGs. The in-plane dipole maintained on 2D models leads to giant Zeeman-type spin splitting, as high as 566 meV for the (001)(c) facet KN and 1.21 eV for the (111)(c) facet KN. The thickness-dependent Zeeman-type spin splitting shows a linear relation with respect to 1/r, while the corresponding in-plane polarization quantum has a linear relation of 1/(2^0.5)with respect to a decrease in thickness. Interestingly, the 2DHGs with molecular-like orbital character is solely constituted by O 2p states, showing logic switchable behavior at extremely thin samples with enormous Zeeman-type splitting that can switch between insulator and conductor by opposite spin polarization. |
---|