Cargando…
Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features
Diffuse low-grade gliomas (LGG) have been reclassified based on molecular mutations, which require invasive tumor tissue sampling. Tissue sampling by biopsy may be limited by sampling error, whereas non-invasive imaging can evaluate the entirety of a tumor. This study presents a non-invasive analysi...
Autores principales: | Shboul, Zeina A., Chen, James, M. Iftekharuddin, Khan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048831/ https://www.ncbi.nlm.nih.gov/pubmed/32111869 http://dx.doi.org/10.1038/s41598-020-60550-0 |
Ejemplares similares
-
Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading
por: Pei, Linmin, et al.
Publicado: (2021) -
Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction
por: Shboul, Zeina A., et al.
Publicado: (2021) -
Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients
por: Farzana, Walia, et al.
Publicado: (2023) -
Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction
por: Shboul, Zeina A., et al.
Publicado: (2019) -
Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: efficacy in preoperative grading
por: Hu, Yu-Chuan, et al.
Publicado: (2014)