Cargando…

A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles

BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li, Sebra, Robert P., Sfakianos, John P., Allette, Kimaada, Wang, Wenhui, Yoo, Seungyeul, Bhardwaj, Nina, Schadt, Eric E., Yao, Xin, Galsky, Matthew D., Zhu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049190/
https://www.ncbi.nlm.nih.gov/pubmed/32111252
http://dx.doi.org/10.1186/s13073-020-0720-0
_version_ 1783502388876804096
author Wang, Li
Sebra, Robert P.
Sfakianos, John P.
Allette, Kimaada
Wang, Wenhui
Yoo, Seungyeul
Bhardwaj, Nina
Schadt, Eric E.
Yao, Xin
Galsky, Matthew D.
Zhu, Jun
author_facet Wang, Li
Sebra, Robert P.
Sfakianos, John P.
Allette, Kimaada
Wang, Wenhui
Yoo, Seungyeul
Bhardwaj, Nina
Schadt, Eric E.
Yao, Xin
Galsky, Matthew D.
Zhu, Jun
author_sort Wang, Li
collection PubMed
description BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. METHODS: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. RESULTS: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. CONCLUSIONS: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types.
format Online
Article
Text
id pubmed-7049190
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-70491902020-03-05 A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles Wang, Li Sebra, Robert P. Sfakianos, John P. Allette, Kimaada Wang, Wenhui Yoo, Seungyeul Bhardwaj, Nina Schadt, Eric E. Yao, Xin Galsky, Matthew D. Zhu, Jun Genome Med Research BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. METHODS: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. RESULTS: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. CONCLUSIONS: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types. BioMed Central 2020-02-28 /pmc/articles/PMC7049190/ /pubmed/32111252 http://dx.doi.org/10.1186/s13073-020-0720-0 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Wang, Li
Sebra, Robert P.
Sfakianos, John P.
Allette, Kimaada
Wang, Wenhui
Yoo, Seungyeul
Bhardwaj, Nina
Schadt, Eric E.
Yao, Xin
Galsky, Matthew D.
Zhu, Jun
A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title_full A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title_fullStr A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title_full_unstemmed A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title_short A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
title_sort reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049190/
https://www.ncbi.nlm.nih.gov/pubmed/32111252
http://dx.doi.org/10.1186/s13073-020-0720-0
work_keys_str_mv AT wangli areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT sebrarobertp areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT sfakianosjohnp areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT allettekimaada areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT wangwenhui areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT yooseungyeul areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT bhardwajnina areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT schadterice areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT yaoxin areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT galskymatthewd areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT zhujun areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT wangli referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT sebrarobertp referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT sfakianosjohnp referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT allettekimaada referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT wangwenhui referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT yooseungyeul referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT bhardwajnina referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT schadterice referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT yaoxin referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT galskymatthewd referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles
AT zhujun referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles