Cargando…
A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-ca...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049190/ https://www.ncbi.nlm.nih.gov/pubmed/32111252 http://dx.doi.org/10.1186/s13073-020-0720-0 |
_version_ | 1783502388876804096 |
---|---|
author | Wang, Li Sebra, Robert P. Sfakianos, John P. Allette, Kimaada Wang, Wenhui Yoo, Seungyeul Bhardwaj, Nina Schadt, Eric E. Yao, Xin Galsky, Matthew D. Zhu, Jun |
author_facet | Wang, Li Sebra, Robert P. Sfakianos, John P. Allette, Kimaada Wang, Wenhui Yoo, Seungyeul Bhardwaj, Nina Schadt, Eric E. Yao, Xin Galsky, Matthew D. Zhu, Jun |
author_sort | Wang, Li |
collection | PubMed |
description | BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. METHODS: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. RESULTS: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. CONCLUSIONS: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types. |
format | Online Article Text |
id | pubmed-7049190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70491902020-03-05 A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles Wang, Li Sebra, Robert P. Sfakianos, John P. Allette, Kimaada Wang, Wenhui Yoo, Seungyeul Bhardwaj, Nina Schadt, Eric E. Yao, Xin Galsky, Matthew D. Zhu, Jun Genome Med Research BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. METHODS: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. RESULTS: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. CONCLUSIONS: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types. BioMed Central 2020-02-28 /pmc/articles/PMC7049190/ /pubmed/32111252 http://dx.doi.org/10.1186/s13073-020-0720-0 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Wang, Li Sebra, Robert P. Sfakianos, John P. Allette, Kimaada Wang, Wenhui Yoo, Seungyeul Bhardwaj, Nina Schadt, Eric E. Yao, Xin Galsky, Matthew D. Zhu, Jun A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title_full | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title_fullStr | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title_full_unstemmed | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title_short | A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
title_sort | reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049190/ https://www.ncbi.nlm.nih.gov/pubmed/32111252 http://dx.doi.org/10.1186/s13073-020-0720-0 |
work_keys_str_mv | AT wangli areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT sebrarobertp areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT sfakianosjohnp areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT allettekimaada areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT wangwenhui areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT yooseungyeul areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT bhardwajnina areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT schadterice areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT yaoxin areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT galskymatthewd areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT zhujun areferenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT wangli referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT sebrarobertp referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT sfakianosjohnp referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT allettekimaada referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT wangwenhui referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT yooseungyeul referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT bhardwajnina referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT schadterice referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT yaoxin referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT galskymatthewd referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles AT zhujun referenceprofilefreedeconvolutionmethodtoinfercancercellintrinsicsubtypesandtumortypespecificstromalprofiles |