Cargando…
Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
BACKGROUND: Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. METHODS: In this paper, we used regularized gradient boosted mach...
Autores principales: | Sardaar, Sameer, Qi, Bill, Dionne-Laporte, Alexandre, Rouleau, Guy. A., Rabbany, Reihaneh, Trakadis, Yannis J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049199/ https://www.ncbi.nlm.nih.gov/pubmed/32111185 http://dx.doi.org/10.1186/s12888-020-02503-5 |
Ejemplares similares
-
Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia
por: Rees, E, et al.
Publicado: (2015) -
Exome sequencing revealed PMM2 gene mutations in a French-Canadian family with congenital atrophy of the cerebellum
por: Noreau, Anne, et al.
Publicado: (2014) -
Trio exome sequencing is highly relevant in prenatal diagnostics
por: Gabriel, Heinz, et al.
Publicado: (2021) -
Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery
por: Qi, Bill, et al.
Publicado: (2020) -
Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder
por: Du, Xiujuan, et al.
Publicado: (2018)