Cargando…
Predicting Acute Graft-Versus-Host Disease Using Machine Learning and Longitudinal Vital Sign Data From Electronic Health Records
PURPOSE: Acute graft-versus-host disease (aGVHD) remains a significant complication of allogeneic hematopoietic cell transplantation (HCT) and limits its broader application. The ability to predict grade II to IV aGVHD could potentially mitigate morbidity and mortality. To date, researchers have foc...
Autores principales: | Tang, Shengpu, Chappell, Grant T., Mazzoli, Amanda, Tewari, Muneesh, Choi, Sung Won, Wiens, Jenna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049247/ https://www.ncbi.nlm.nih.gov/pubmed/32083957 http://dx.doi.org/10.1200/CCI.19.00105 |
Ejemplares similares
-
Electronic Medical Record Tobacco Use Vital Sign
por: Norris, John W, et al.
Publicado: (2004) -
Electronic Medical Record Tobacco Use Vital Sign
por: Norris, John W, et al.
Publicado: (2004) -
Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection
por: Li, Benjamin Y, et al.
Publicado: (2019) -
Assessing the Added Value of Vital Signs Extracted from Electronic Health Records in Healthcare Risk Adjustment Models
por: Kitchen, Christopher, et al.
Publicado: (2022) -
The quality of vital signs measurements and value preferences in electronic medical records varies by hospital, specialty, and patient demographics
por: Jackson, Niall, et al.
Publicado: (2023)