Cargando…
Metabolic characterisation of THP-1 macrophage polarisation using LC–MS-based metabolite profiling
INTRODUCTION: Macrophages constitute a heterogeneous population of functionally distinct cells involved in several physiological and pathological processes. They display remarkable plasticity by changing their phenotype and function in response to environmental cues representing a spectrum of differ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049298/ https://www.ncbi.nlm.nih.gov/pubmed/32114632 http://dx.doi.org/10.1007/s11306-020-01656-4 |
Sumario: | INTRODUCTION: Macrophages constitute a heterogeneous population of functionally distinct cells involved in several physiological and pathological processes. They display remarkable plasticity by changing their phenotype and function in response to environmental cues representing a spectrum of different functional phenotypes. The so-called M1 and M2 macrophages are often considered as representative of pro- and anti-inflammatory ends of such spectrum. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. OBJECTIVES: This study aimed to characterise M1 and M2 phenotypes in THP-1 macrophages in order to identify characteristic metabolites of each polarisation state. METHODS: Herein, untargeted liquid chromatography (LC)–mass spectrometry (MS)-based metabolite profiling was applied to characterise the metabolic profile of M1-like and M2-like THP-1 macrophages. RESULTS: The results showed that M1 and M2 macrophages have distinct metabolic profiles. Sphingolipid and pyrimidine metabolism was significantly changed in M1 macrophages whereas arginine, proline, alanine, aspartate and glutamate metabolism was significantly altered in M2 macrophages. CONCLUSION: This study represents successful application of LC–MS metabolomics approach to characterise M1 and M2 macrophages providing functional readouts that show unique metabolic signature for each phenotype. These data could contribute to a better understanding of M1 and M2 functional properties and could pave the way for developing new therapeutics targeting different immune diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11306-020-01656-4) contains supplementary material, which is available to authorized users. |
---|