Cargando…
A Novel Low-Bit Quantization Strategy for Compressing Deep Neural Networks
The increase in sophistication of neural network models in recent years has exponentially expanded memory consumption and computational cost, thereby hindering their applications on ASIC, FPGA, and other mobile devices. Therefore, compressing and accelerating the neural networks are necessary. In th...
Autores principales: | Long, Xin, Zeng, XiangRong, Ben, Zongcheng, Zhou, Dianle, Zhang, Maojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049432/ https://www.ncbi.nlm.nih.gov/pubmed/32148472 http://dx.doi.org/10.1155/2020/7839064 |
Ejemplares similares
-
How Many Bits Does it Take to Quantize Your Neural Network?
por: Giacobbe, Mirco, et al.
Publicado: (2020) -
Design of a 2-Bit Neural Network Quantizer for Laplacian Source
por: Perić, Zoran, et al.
Publicado: (2021) -
SensiMix: Sensitivity-Aware 8-bit index & 1-bit value mixed precision quantization for BERT compression
por: Piao, Tairen, et al.
Publicado: (2022) -
Single Abrikosov vortices as quantized information bits
por: Golod, T., et al.
Publicado: (2015) -
Optimization of the Sampling Periods and the Quantization Bit Lengths for Networked Estimation
por: Suh, Young Soo, et al.
Publicado: (2010)