Cargando…
Comprehensive Exploration of Target‐specific Ligands Using a Graph Convolution Neural Network
Machine learning approaches are widely used to evaluate ligand activities of chemical compounds toward potential target proteins. Especially, exploration of highly selective ligands is important for the development of new drugs with higher safety. One difficulty in constructing well‐performing model...
Autores principales: | Miyazaki, Yu, Ono, Naoaki, Huang, Ming, Altaf‐Ul‐Amin, Md., Kanaya, Shigehiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050504/ https://www.ncbi.nlm.nih.gov/pubmed/31815371 http://dx.doi.org/10.1002/minf.201900095 |
Ejemplares similares
-
Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks
por: Eguchi, Ryohei, et al.
Publicado: (2019) -
Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
por: Antonio, Victor Andrew A., et al.
Publicado: (2018) -
Recent Trends in Computational Biomedical Research
por: Altaf-Ul-Amin, Md., et al.
Publicado: (2021) -
On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme
por: Wang, Huijia, et al.
Publicado: (2023) -
Antibacterial Activity Prediction of Plant Secondary Metabolites Based on a Combined Approach of Graph Clustering and Deep Neural Network
por: Karim, Mohammad Bozlul, et al.
Publicado: (2022)