Cargando…
TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance
Understanding the genetic basis for a phenotype is a central goal in biological research. Much has been learnt about bacterial genomes by creating large mutant libraries and looking for conditionally important genes. However, current genome-wide methods are largely unable to assay essential genes wh...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050523/ https://www.ncbi.nlm.nih.gov/pubmed/32051187 http://dx.doi.org/10.1101/gr.254391.119 |
_version_ | 1783502625927331840 |
---|---|
author | Yasir, Muhammad Turner, A. Keith Bastkowski, Sarah Baker, David Page, Andrew J. Telatin, Andrea Phan, Minh-Duy Monahan, Leigh Savva, George M. Darling, Aaron Webber, Mark A. Charles, Ian G. |
author_facet | Yasir, Muhammad Turner, A. Keith Bastkowski, Sarah Baker, David Page, Andrew J. Telatin, Andrea Phan, Minh-Duy Monahan, Leigh Savva, George M. Darling, Aaron Webber, Mark A. Charles, Ian G. |
author_sort | Yasir, Muhammad |
collection | PubMed |
description | Understanding the genetic basis for a phenotype is a central goal in biological research. Much has been learnt about bacterial genomes by creating large mutant libraries and looking for conditionally important genes. However, current genome-wide methods are largely unable to assay essential genes which are not amenable to disruption. To overcome this limitation, we developed a new version of “TraDIS” (transposon directed insertion-site sequencing) that we term “TraDIS-Xpress” that combines an inducible promoter into the transposon cassette. This allows controlled overexpression and repression of all genes owing to saturation of inserts adjacent to all open reading frames as well as conventional inactivation. We applied TraDIS-Xpress to identify responses to the biocide triclosan across a range of concentrations. Triclosan is endemic in modern life, but there is uncertainty about its mode of action with a concentration-dependent switch from bacteriostatic to bactericidal action unexplained. Our results show a concentration-dependent response to triclosan with different genes important in survival between static and cidal exposures. These genes include those previously reported to have a role in triclosan resistance as well as a new set of genes, including essential genes. Novel genes identified as being sensitive to triclosan exposure include those involved in barrier function, small molecule uptake, and integrity of transcription and translation. We anticipate the approach we show here, by allowing comparisons across multiple experimental conditions of TraDIS data, and including essential genes, will be a starting point for future work examining how different drug conditions impact bacterial survival mechanisms. |
format | Online Article Text |
id | pubmed-7050523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-70505232020-03-16 TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance Yasir, Muhammad Turner, A. Keith Bastkowski, Sarah Baker, David Page, Andrew J. Telatin, Andrea Phan, Minh-Duy Monahan, Leigh Savva, George M. Darling, Aaron Webber, Mark A. Charles, Ian G. Genome Res Method Understanding the genetic basis for a phenotype is a central goal in biological research. Much has been learnt about bacterial genomes by creating large mutant libraries and looking for conditionally important genes. However, current genome-wide methods are largely unable to assay essential genes which are not amenable to disruption. To overcome this limitation, we developed a new version of “TraDIS” (transposon directed insertion-site sequencing) that we term “TraDIS-Xpress” that combines an inducible promoter into the transposon cassette. This allows controlled overexpression and repression of all genes owing to saturation of inserts adjacent to all open reading frames as well as conventional inactivation. We applied TraDIS-Xpress to identify responses to the biocide triclosan across a range of concentrations. Triclosan is endemic in modern life, but there is uncertainty about its mode of action with a concentration-dependent switch from bacteriostatic to bactericidal action unexplained. Our results show a concentration-dependent response to triclosan with different genes important in survival between static and cidal exposures. These genes include those previously reported to have a role in triclosan resistance as well as a new set of genes, including essential genes. Novel genes identified as being sensitive to triclosan exposure include those involved in barrier function, small molecule uptake, and integrity of transcription and translation. We anticipate the approach we show here, by allowing comparisons across multiple experimental conditions of TraDIS data, and including essential genes, will be a starting point for future work examining how different drug conditions impact bacterial survival mechanisms. Cold Spring Harbor Laboratory Press 2020-02 /pmc/articles/PMC7050523/ /pubmed/32051187 http://dx.doi.org/10.1101/gr.254391.119 Text en © 2020 Yasir et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Method Yasir, Muhammad Turner, A. Keith Bastkowski, Sarah Baker, David Page, Andrew J. Telatin, Andrea Phan, Minh-Duy Monahan, Leigh Savva, George M. Darling, Aaron Webber, Mark A. Charles, Ian G. TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title | TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title_full | TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title_fullStr | TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title_full_unstemmed | TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title_short | TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
title_sort | tradis-xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050523/ https://www.ncbi.nlm.nih.gov/pubmed/32051187 http://dx.doi.org/10.1101/gr.254391.119 |
work_keys_str_mv | AT yasirmuhammad tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT turnerakeith tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT bastkowskisarah tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT bakerdavid tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT pageandrewj tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT telatinandrea tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT phanminhduy tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT monahanleigh tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT savvageorgem tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT darlingaaron tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT webbermarka tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance AT charlesiang tradisxpressahighresolutionwholegenomeassayidentifiesnovelmechanismsoftriclosanactionandresistance |