Cargando…
netNMF-sc: leveraging gene–gene interactions for imputation and dimensionality reduction in single-cell expression analysis
Single-cell RNA-sequencing (scRNA-seq) enables high-throughput measurement of RNA expression in single cells. However, because of technical limitations, scRNA-seq data often contain zero counts for many transcripts in individual cells. These zero counts, or dropout events, complicate the analysis of...
Autores principales: | Elyanow, Rebecca, Dumitrascu, Bianca, Engelhardt, Barbara E., Raphael, Benjamin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050525/ https://www.ncbi.nlm.nih.gov/pubmed/31992614 http://dx.doi.org/10.1101/gr.251603.119 |
Ejemplares similares
-
Associating brain imaging phenotypes and genetic risk factors via a hypergraph based netNMF method
por: Zhuang, Junli, et al.
Publicado: (2023) -
Identification of the methotrexate resistance-related diagnostic markers in osteosarcoma via adaptive total variation netNMF and multi-omics datasets
por: Jiang, Zhihan, et al.
Publicado: (2023) -
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data
por: Xu, Jingjing, et al.
Publicado: (2021) -
An NMF-based approach to discover overlooked differentially expressed gene regions from single-cell RNA-seq data
por: Matsumoto, Hirotaka, et al.
Publicado: (2019) -
scIGANs: single-cell RNA-seq imputation using generative adversarial networks
por: Xu, Yungang, et al.
Publicado: (2020)