Cargando…
Validation Study of QSAR/DNN Models Using the Competition Datasets
Since the QSAR/DNN model showed predominant predictive performance over other conventional methods in the Kaggle QSAR competition, many artificial neural network (ANN) methods have been applied to drug and material discovery. Appearance of artificial intelligence (AI), which is combined various gene...
Autores principales: | Kato, Yoshiki, Hamada, Shinji, Goto, Hitoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050538/ https://www.ncbi.nlm.nih.gov/pubmed/31802634 http://dx.doi.org/10.1002/minf.201900154 |
Ejemplares similares
-
Quantitative Structure‐activity Relationship (QSAR) Models for Docking Score Correction
por: Fukunishi, Yoshifumi, et al.
Publicado: (2016) -
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
por: Rácz, Anita, et al.
Publicado: (2019) -
Hardware-Based Architecture for DNN Wireless Communication Models
por: Tran, Van Duy, et al.
Publicado: (2023) -
Sigma-2 receptor ligands QSAR model dataset
por: Rescifina, Antonio, et al.
Publicado: (2017) -
3D-QSAR Study of Potent Inhibitors of Phosphodiesterase-4 Using a CoMFA Approach
por: Yang, Zhaoqi, et al.
Publicado: (2007)