Cargando…

Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands

BACKGROUND/AIMS: Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a seroto...

Descripción completa

Detalles Bibliográficos
Autores principales: Manzella, Christopher R., Ackerman, Max, Singhal, Megha, Ticho, Alexander L., Ceh, Justin, Alrefai, Waddah A., Saksena, Seema, Dudeja, Pradeep K., Gill, Ravinder K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050772/
https://www.ncbi.nlm.nih.gov/pubmed/32017483
http://dx.doi.org/10.33594/000000209
Descripción
Sumario:BACKGROUND/AIMS: Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). METHODS: Inhibition of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was measured by ethoxyresorufin-O-deethylase (EROD) assays. For in vivo studies, AhR ligands were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA was measured. RESULTS: We show that 5-HT inhibits metabolism of both the pro-luciferin CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates such as FICZ. Administration of β-napthoflavone by gavage or indole-3-carbinol via diet to SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. CONCLUSION: Our studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.