Cargando…
Deep neural network classification based on somatic mutations potentially predicts clinical benefit of immune checkpoint blockade in lung adenocarcinoma
Although several biomarkers have been proposed to predict the response of patients with lung adenocarcinoma (LUAD) to immune checkpoint blockade (ICB) therapy, existing challenges such as test platform uniformity, cutoff value definition, and low frequencies restrict their effective clinical applica...
Autores principales: | Peng, Jie, Zou, Dan, Gong, Wuxing, Kang, Shuai, Han, Lijie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051190/ https://www.ncbi.nlm.nih.gov/pubmed/32158626 http://dx.doi.org/10.1080/2162402X.2020.1734156 |
Ejemplares similares
-
Mutations Associated with No Durable Clinical Benefit to Immune Checkpoint Blockade in Non-S-Cell Lung Cancer
por: Zhu, Guangsheng, et al.
Publicado: (2021) -
The Predictive Role of Immune Related Subgroup Classification in Immune Checkpoint Blockade Therapy for Lung Adenocarcinoma
por: Yu, Xiaozhou, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
Molecular classification of prostate adenocarcinoma by the integrated somatic mutation profiles and molecular network
por: Yang, Lei, et al.
Publicado: (2017) -
A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma
por: Budczies, Jan, et al.
Publicado: (2021)