Cargando…
Structural Alterations in Large-scale Brain Networks and Their Relationship with Sleep Disturbances in the Adolescent Population
Although sleep disturbances are highly prevalent in adolescents, neuroimaging evidence on the effects of sleep disturbances on their developing brains remains limited. Therefore, we explored gray matter volumes (GMVs) at the whole-brain level and investigated their relationship to sleep disturbances...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051958/ https://www.ncbi.nlm.nih.gov/pubmed/32123208 http://dx.doi.org/10.1038/s41598-020-60692-1 |
Sumario: | Although sleep disturbances are highly prevalent in adolescents, neuroimaging evidence on the effects of sleep disturbances on their developing brains remains limited. Therefore, we explored gray matter volumes (GMVs) at the whole-brain level and investigated their relationship to sleep disturbances in a sample of Korean adolescents in the general population. We recruited participants from one middle school and high school. All participants and their legal guardians gave informed consent before participating in our study. We used component 5 of the Pittsburgh Sleep Quality Index to measure sleep disturbances and conducted a voxel-based morphometry-DARTEL procedure to measure GMVs. We performed partial correlation analyses to examine whether the GMVs were associated with sleep disturbances. A total of 56 adolescents participated in this study. Our results revealed that GMVs in multiple global regions were negatively correlated with sleep disturbances. Moreover, most of these identified regions belong to large-scale brain networks categorized by functional neuroimaging studies. We found an association between regional GMVs in multiple global regions involved in large-scale networks and the severity of sleep disturbances in the adolescent population. Based on this evidence and previous neuroimaging evidence, we suggest that structural alterations in the networks may be linked to sleep disturbances. |
---|