Cargando…

Attractor Ranked Radial Basis Function Network: A Nonparametric Forecasting Approach for Chaotic Dynamic Systems

The curse of dimensionality has long been a hurdle in the analysis of complex data in areas such as computational biology, ecology and econometrics. In this work, we present a forecasting algorithm that exploits the dimensionality of data in a nonparametric autoregressive framework. The main idea is...

Descripción completa

Detalles Bibliográficos
Autores principales: Masnadi-Shirazi, Maryam, Subramaniam, Shankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052196/
https://www.ncbi.nlm.nih.gov/pubmed/32123218
http://dx.doi.org/10.1038/s41598-020-60606-1
Descripción
Sumario:The curse of dimensionality has long been a hurdle in the analysis of complex data in areas such as computational biology, ecology and econometrics. In this work, we present a forecasting algorithm that exploits the dimensionality of data in a nonparametric autoregressive framework. The main idea is that the dynamics of a chaotic dynamical system consisting of multiple time-series can be reconstructed using a combination of different variables. This nonlinear autoregressive algorithm uses multivariate attractors reconstructed as the inputs of a neural network to predict the future. We show that our approach, attractor ranked radial basis function network (AR-RBFN) provides a better forecast than that obtained using other model-free approaches as well as univariate and multivariate autoregressive models using radial basis function networks. We demonstrate this for simulated ecosystem models and a mesocosm experiment. By taking advantage of dimensionality, we show that AR-RBFN overcomes the shortcomings of noisy and short time-series data.