Cargando…
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug design. In this paper, we present FRnet-DTI, an auto-encoder based feature manipulation and a convolutional neural network based classifier for drug target interaction prediction. Two con...
Autores principales: | Rayhan, Farshid, Ahmed, Sajid, Mousavian, Zaynab, Farid, Dewan Md, Shatabda, Swakkhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052404/ https://www.ncbi.nlm.nih.gov/pubmed/32154410 http://dx.doi.org/10.1016/j.heliyon.2020.e03444 |
Ejemplares similares
-
iDTI-ESBoost: Identification of Drug Target Interaction Using Evolutionary and Structural Features with Boosting
por: Rayhan, Farshid, et al.
Publicado: (2017) -
ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides
por: Ahmed, Sajid, et al.
Publicado: (2021) -
A convolutional neural network based tool for predicting protein AMPylation sites from binary profile representation
por: Azim, Sayed Mehedi, et al.
Publicado: (2022) -
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome
por: Rahman, Chowdhury Rafeed, et al.
Publicado: (2021)