Cargando…
Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods
PURPOSE: Mutation-induced variation of protein-ligand binding affinity is the key to many genetic diseases and the emergence of drug resistance, and therefore predicting such mutation impacts is of great importance. In this work, we aim to predict the mutation impacts on protein-ligand binding affin...
Autores principales: | Wang, Debby D., Ou-Yang, Le, Xie, Haoran, Zhu, Mengxu, Yan, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052406/ https://www.ncbi.nlm.nih.gov/pubmed/32153730 http://dx.doi.org/10.1016/j.csbj.2020.02.007 |
Ejemplares similares
-
Applied machine learning for predicting the lanthanide-ligand binding affinities
por: Chaube, Suryanaman, et al.
Publicado: (2020) -
Genotype-determined EGFR-RTK heterodimerization and its effects on drug resistance in lung Cancer treatment revealed by molecular dynamics simulations
por: Zhu, Mengxu, et al.
Publicado: (2021) -
Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
por: Wang, Debby D., et al.
Publicado: (2022) -
PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications
por: Korlepara, Divya B., et al.
Publicado: (2022) -
Structure-based protein–ligand interaction fingerprints for binding affinity prediction
por: Wang, Debby D., et al.
Publicado: (2021)