Cargando…
Probabilistic Circuits for Autonomous Learning: A Simulation Study
Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient. In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that...
Autores principales: | Kaiser, Jan, Faria, Rafatul, Camsari, Kerem Y., Datta, Supriyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052495/ https://www.ncbi.nlm.nih.gov/pubmed/32161530 http://dx.doi.org/10.3389/fncom.2020.00014 |
Ejemplares similares
-
Hardware Design for Autonomous Bayesian Networks
por: Faria, Rafatul, et al.
Publicado: (2021) -
Modular Approach to Spintronics
por: Camsari, Kerem Yunus, et al.
Publicado: (2015) -
Hardware implementation of Bayesian network building blocks with stochastic spintronic devices
por: Debashis, Punyashloka, et al.
Publicado: (2020) -
Spin Funneling for Enhanced Spin Injection into Ferromagnets
por: Sayed, Shehrin, et al.
Publicado: (2016) -
Intrinsic optimization using stochastic nanomagnets
por: Sutton, Brian, et al.
Publicado: (2017)