Cargando…
Deep graph embedding for prioritizing synergistic anticancer drug combinations
Drug combinations are frequently used for the treatment of cancer patients in order to increase efficacy, decrease adverse side effects, or overcome drug resistance. Given the enormous number of drug combinations, it is cost- and time-consuming to screen all possible drug pairs experimentally. Curre...
Autores principales: | Jiang, Peiran, Huang, Shujun, Fu, Zhenyuan, Sun, Zexuan, Lakowski, Ted M., Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052513/ https://www.ncbi.nlm.nih.gov/pubmed/32153729 http://dx.doi.org/10.1016/j.csbj.2020.02.006 |
Ejemplares similares
-
Predicting breast cancer drug response using a multiple-layer cell line drug response network model
por: Huang, Shujun, et al.
Publicado: (2021) -
Bioinformatics driven discovery of small molecule compounds that modulate the FOXM1 and PPARA pathway activities in breast cancer
por: Huang, Shujun, et al.
Publicado: (2022) -
Worsening of Verbal Fluency After Deep Brain Stimulation in Parkinson's Disease: A Focused Review
por: Højlund, Andreas, et al.
Publicado: (2016) -
Combinations of Genetic Variants Occurring Exclusively in Patients
por: Mellerup, Erling, et al.
Publicado: (2017) -
Integrative Analysis Reveals Subtype-Specific Regulatory Determinants in Triple Negative Breast Cancer
por: Huang, Shujun, et al.
Publicado: (2019)