Cargando…

Rapid crossed responses in an intrinsic hand muscle during perturbed bimanual movements

Mechanical perturbations in one upper limb often elicit corrective responses in both the perturbed as well as its contralateral and unperturbed counterpart. These crossed corrective responses have been shown to be sensitive to the bimanual requirements of the perturbation, but crossed responses (CRs...

Descripción completa

Detalles Bibliográficos
Autores principales: Khong, Katie Y. W., Galán, Ferran, Soteropoulos, Demetris S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physiological Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052646/
https://www.ncbi.nlm.nih.gov/pubmed/31851557
http://dx.doi.org/10.1152/jn.00282.2019
Descripción
Sumario:Mechanical perturbations in one upper limb often elicit corrective responses in both the perturbed as well as its contralateral and unperturbed counterpart. These crossed corrective responses have been shown to be sensitive to the bimanual requirements of the perturbation, but crossed responses (CRs) in hand muscles are far less well studied. Here, we investigate corrective CRs in an intrinsic hand muscle, the first dorsal interosseous (1DI), to clockwise and anticlockwise mechanical perturbations to the contralateral index finger while participants performed a bimanual finger abduction task. We found that the CRs in the unperturbed 1DI were sensitive to the direction of the perturbation of the contralateral index finger. However, the size of the CRs was not sensitive to the amplitude of the contralateral perturbation nor its context within the bimanual task. The onset latency of the CRs was too fast to be purely transcortical (<70 ms) in 12/12 participants. This confirms that during isolated bimanual finger movements, sensory feedback from one hand can influence the other, but the pathways mediating the earliest components of this interaction are likely to involve subcortical systems such as the brainstem or spinal cord, which may afford less flexibility to the task demands. NEW & NOTEWORTHY An intrinsic hand muscle shows a crossed response to a perturbation of the contralateral index finger. The crossed response is dependent on the direction of the contralateral perturbation but not on the amplitude or the bimanual requirements of the movement, suggesting a far less flexible control policy than those governing crossed responses in more proximal muscles. The crossed response is too fast to be purely mediated by transcortical pathways, suggesting subcortical contributions.