Cargando…
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography inter...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052735/ https://www.ncbi.nlm.nih.gov/pubmed/32119094 http://dx.doi.org/10.1001/jamanetworkopen.2020.0265 |
_version_ | 1783502915060629504 |
---|---|
author | Schaffter, Thomas Buist, Diana S. M. Lee, Christoph I. Nikulin, Yaroslav Ribli, Dezső Guan, Yuanfang Lotter, William Jie, Zequn Du, Hao Wang, Sijia Feng, Jiashi Feng, Mengling Kim, Hyo-Eun Albiol, Francisco Albiol, Alberto Morrell, Stephen Wojna, Zbigniew Ahsen, Mehmet Eren Asif, Umar Jimeno Yepes, Antonio Yohanandan, Shivanthan Rabinovici-Cohen, Simona Yi, Darvin Hoff, Bruce Yu, Thomas Chaibub Neto, Elias Rubin, Daniel L. Lindholm, Peter Margolies, Laurie R. McBride, Russell Bailey Rothstein, Joseph H. Sieh, Weiva Ben-Ari, Rami Harrer, Stefan Trister, Andrew Friend, Stephen Norman, Thea Sahiner, Berkman Strand, Fredrik Guinney, Justin Stolovitzky, Gustavo Mackey, Lester Cahoon, Joyce Shen, Li Sohn, Jae Ho Trivedi, Hari Shen, Yiqiu Buturovic, Ljubomir Pereira, Jose Costa Cardoso, Jaime S. Castro, Eduardo Kalleberg, Karl Trygve Pelka, Obioma Nedjar, Imane Geras, Krzysztof J. Nensa, Felix Goan, Ethan Koitka, Sven Caballero, Luis Cox, David D. Krishnaswamy, Pavitra Pandey, Gaurav Friedrich, Christoph M. Perrin, Dimitri Fookes, Clinton Shi, Bibo Cardoso Negrie, Gerard Kawczynski, Michael Cho, Kyunghyun Khoo, Can Son Lo, Joseph Y. Sorensen, A. Gregory Jung, Hwejin |
author_facet | Schaffter, Thomas Buist, Diana S. M. Lee, Christoph I. Nikulin, Yaroslav Ribli, Dezső Guan, Yuanfang Lotter, William Jie, Zequn Du, Hao Wang, Sijia Feng, Jiashi Feng, Mengling Kim, Hyo-Eun Albiol, Francisco Albiol, Alberto Morrell, Stephen Wojna, Zbigniew Ahsen, Mehmet Eren Asif, Umar Jimeno Yepes, Antonio Yohanandan, Shivanthan Rabinovici-Cohen, Simona Yi, Darvin Hoff, Bruce Yu, Thomas Chaibub Neto, Elias Rubin, Daniel L. Lindholm, Peter Margolies, Laurie R. McBride, Russell Bailey Rothstein, Joseph H. Sieh, Weiva Ben-Ari, Rami Harrer, Stefan Trister, Andrew Friend, Stephen Norman, Thea Sahiner, Berkman Strand, Fredrik Guinney, Justin Stolovitzky, Gustavo Mackey, Lester Cahoon, Joyce Shen, Li Sohn, Jae Ho Trivedi, Hari Shen, Yiqiu Buturovic, Ljubomir Pereira, Jose Costa Cardoso, Jaime S. Castro, Eduardo Kalleberg, Karl Trygve Pelka, Obioma Nedjar, Imane Geras, Krzysztof J. Nensa, Felix Goan, Ethan Koitka, Sven Caballero, Luis Cox, David D. Krishnaswamy, Pavitra Pandey, Gaurav Friedrich, Christoph M. Perrin, Dimitri Fookes, Clinton Shi, Bibo Cardoso Negrie, Gerard Kawczynski, Michael Cho, Kyunghyun Khoo, Can Son Lo, Joseph Y. Sorensen, A. Gregory Jung, Hwejin |
author_sort | Schaffter, Thomas |
collection | PubMed |
description | IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. MAIN OUTCOMES AND MEASUREMENTS: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists’ specificity with radiologists’ sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists’ recall assessment was developed and evaluated. RESULTS: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists’ sensitivity, lower than community-practice radiologists’ specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. CONCLUSIONS AND RELEVANCE: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. |
format | Online Article Text |
id | pubmed-7052735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Medical Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-70527352020-03-16 Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Schaffter, Thomas Buist, Diana S. M. Lee, Christoph I. Nikulin, Yaroslav Ribli, Dezső Guan, Yuanfang Lotter, William Jie, Zequn Du, Hao Wang, Sijia Feng, Jiashi Feng, Mengling Kim, Hyo-Eun Albiol, Francisco Albiol, Alberto Morrell, Stephen Wojna, Zbigniew Ahsen, Mehmet Eren Asif, Umar Jimeno Yepes, Antonio Yohanandan, Shivanthan Rabinovici-Cohen, Simona Yi, Darvin Hoff, Bruce Yu, Thomas Chaibub Neto, Elias Rubin, Daniel L. Lindholm, Peter Margolies, Laurie R. McBride, Russell Bailey Rothstein, Joseph H. Sieh, Weiva Ben-Ari, Rami Harrer, Stefan Trister, Andrew Friend, Stephen Norman, Thea Sahiner, Berkman Strand, Fredrik Guinney, Justin Stolovitzky, Gustavo Mackey, Lester Cahoon, Joyce Shen, Li Sohn, Jae Ho Trivedi, Hari Shen, Yiqiu Buturovic, Ljubomir Pereira, Jose Costa Cardoso, Jaime S. Castro, Eduardo Kalleberg, Karl Trygve Pelka, Obioma Nedjar, Imane Geras, Krzysztof J. Nensa, Felix Goan, Ethan Koitka, Sven Caballero, Luis Cox, David D. Krishnaswamy, Pavitra Pandey, Gaurav Friedrich, Christoph M. Perrin, Dimitri Fookes, Clinton Shi, Bibo Cardoso Negrie, Gerard Kawczynski, Michael Cho, Kyunghyun Khoo, Can Son Lo, Joseph Y. Sorensen, A. Gregory Jung, Hwejin JAMA Netw Open Original Investigation IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. MAIN OUTCOMES AND MEASUREMENTS: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists’ specificity with radiologists’ sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists’ recall assessment was developed and evaluated. RESULTS: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists’ sensitivity, lower than community-practice radiologists’ specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. CONCLUSIONS AND RELEVANCE: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. American Medical Association 2020-03-02 /pmc/articles/PMC7052735/ /pubmed/32119094 http://dx.doi.org/10.1001/jamanetworkopen.2020.0265 Text en Copyright 2020 Schaffter T et al. JAMA Network Open. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the CC-BY License. |
spellingShingle | Original Investigation Schaffter, Thomas Buist, Diana S. M. Lee, Christoph I. Nikulin, Yaroslav Ribli, Dezső Guan, Yuanfang Lotter, William Jie, Zequn Du, Hao Wang, Sijia Feng, Jiashi Feng, Mengling Kim, Hyo-Eun Albiol, Francisco Albiol, Alberto Morrell, Stephen Wojna, Zbigniew Ahsen, Mehmet Eren Asif, Umar Jimeno Yepes, Antonio Yohanandan, Shivanthan Rabinovici-Cohen, Simona Yi, Darvin Hoff, Bruce Yu, Thomas Chaibub Neto, Elias Rubin, Daniel L. Lindholm, Peter Margolies, Laurie R. McBride, Russell Bailey Rothstein, Joseph H. Sieh, Weiva Ben-Ari, Rami Harrer, Stefan Trister, Andrew Friend, Stephen Norman, Thea Sahiner, Berkman Strand, Fredrik Guinney, Justin Stolovitzky, Gustavo Mackey, Lester Cahoon, Joyce Shen, Li Sohn, Jae Ho Trivedi, Hari Shen, Yiqiu Buturovic, Ljubomir Pereira, Jose Costa Cardoso, Jaime S. Castro, Eduardo Kalleberg, Karl Trygve Pelka, Obioma Nedjar, Imane Geras, Krzysztof J. Nensa, Felix Goan, Ethan Koitka, Sven Caballero, Luis Cox, David D. Krishnaswamy, Pavitra Pandey, Gaurav Friedrich, Christoph M. Perrin, Dimitri Fookes, Clinton Shi, Bibo Cardoso Negrie, Gerard Kawczynski, Michael Cho, Kyunghyun Khoo, Can Son Lo, Joseph Y. Sorensen, A. Gregory Jung, Hwejin Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title | Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title_full | Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title_fullStr | Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title_full_unstemmed | Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title_short | Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms |
title_sort | evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052735/ https://www.ncbi.nlm.nih.gov/pubmed/32119094 http://dx.doi.org/10.1001/jamanetworkopen.2020.0265 |
work_keys_str_mv | AT schaffterthomas evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT buistdianasm evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT leechristophi evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT nikulinyaroslav evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT riblidezso evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT guanyuanfang evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT lotterwilliam evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT jiezequn evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT duhao evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT wangsijia evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT fengjiashi evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT fengmengling evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT kimhyoeun evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT albiolfrancisco evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT albiolalberto evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT morrellstephen evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT wojnazbigniew evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT ahsenmehmeteren evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT asifumar evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT jimenoyepesantonio evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT yohanandanshivanthan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT rabinovicicohensimona evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT yidarvin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT hoffbruce evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT yuthomas evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT chaibubnetoelias evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT rubindaniell evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT lindholmpeter evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT margolieslaurier evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT mcbriderussellbailey evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT rothsteinjosephh evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT siehweiva evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT benarirami evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT harrerstefan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT tristerandrew evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT friendstephen evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT normanthea evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT sahinerberkman evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT strandfredrik evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT guinneyjustin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT stolovitzkygustavo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT mackeylester evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT cahoonjoyce evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT shenli evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT sohnjaeho evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT trivedihari evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT shenyiqiu evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT buturovicljubomir evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT pereirajosecosta evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT cardosojaimes evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT castroeduardo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT kallebergkarltrygve evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT pelkaobioma evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT nedjarimane evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT geraskrzysztofj evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT nensafelix evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT goanethan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT koitkasven evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT caballeroluis evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT coxdavidd evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT krishnaswamypavitra evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT pandeygaurav evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT friedrichchristophm evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT perrindimitri evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT fookesclinton evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT shibibo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT cardosonegriegerard evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT kawczynskimichael evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT chokyunghyun evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT khoocanson evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT lojosephy evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT sorensenagregory evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms AT junghwejin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms |