Cargando…

Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms

IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaffter, Thomas, Buist, Diana S. M., Lee, Christoph I., Nikulin, Yaroslav, Ribli, Dezső, Guan, Yuanfang, Lotter, William, Jie, Zequn, Du, Hao, Wang, Sijia, Feng, Jiashi, Feng, Mengling, Kim, Hyo-Eun, Albiol, Francisco, Albiol, Alberto, Morrell, Stephen, Wojna, Zbigniew, Ahsen, Mehmet Eren, Asif, Umar, Jimeno Yepes, Antonio, Yohanandan, Shivanthan, Rabinovici-Cohen, Simona, Yi, Darvin, Hoff, Bruce, Yu, Thomas, Chaibub Neto, Elias, Rubin, Daniel L., Lindholm, Peter, Margolies, Laurie R., McBride, Russell Bailey, Rothstein, Joseph H., Sieh, Weiva, Ben-Ari, Rami, Harrer, Stefan, Trister, Andrew, Friend, Stephen, Norman, Thea, Sahiner, Berkman, Strand, Fredrik, Guinney, Justin, Stolovitzky, Gustavo, Mackey, Lester, Cahoon, Joyce, Shen, Li, Sohn, Jae Ho, Trivedi, Hari, Shen, Yiqiu, Buturovic, Ljubomir, Pereira, Jose Costa, Cardoso, Jaime S., Castro, Eduardo, Kalleberg, Karl Trygve, Pelka, Obioma, Nedjar, Imane, Geras, Krzysztof J., Nensa, Felix, Goan, Ethan, Koitka, Sven, Caballero, Luis, Cox, David D., Krishnaswamy, Pavitra, Pandey, Gaurav, Friedrich, Christoph M., Perrin, Dimitri, Fookes, Clinton, Shi, Bibo, Cardoso Negrie, Gerard, Kawczynski, Michael, Cho, Kyunghyun, Khoo, Can Son, Lo, Joseph Y., Sorensen, A. Gregory, Jung, Hwejin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052735/
https://www.ncbi.nlm.nih.gov/pubmed/32119094
http://dx.doi.org/10.1001/jamanetworkopen.2020.0265
_version_ 1783502915060629504
author Schaffter, Thomas
Buist, Diana S. M.
Lee, Christoph I.
Nikulin, Yaroslav
Ribli, Dezső
Guan, Yuanfang
Lotter, William
Jie, Zequn
Du, Hao
Wang, Sijia
Feng, Jiashi
Feng, Mengling
Kim, Hyo-Eun
Albiol, Francisco
Albiol, Alberto
Morrell, Stephen
Wojna, Zbigniew
Ahsen, Mehmet Eren
Asif, Umar
Jimeno Yepes, Antonio
Yohanandan, Shivanthan
Rabinovici-Cohen, Simona
Yi, Darvin
Hoff, Bruce
Yu, Thomas
Chaibub Neto, Elias
Rubin, Daniel L.
Lindholm, Peter
Margolies, Laurie R.
McBride, Russell Bailey
Rothstein, Joseph H.
Sieh, Weiva
Ben-Ari, Rami
Harrer, Stefan
Trister, Andrew
Friend, Stephen
Norman, Thea
Sahiner, Berkman
Strand, Fredrik
Guinney, Justin
Stolovitzky, Gustavo
Mackey, Lester
Cahoon, Joyce
Shen, Li
Sohn, Jae Ho
Trivedi, Hari
Shen, Yiqiu
Buturovic, Ljubomir
Pereira, Jose Costa
Cardoso, Jaime S.
Castro, Eduardo
Kalleberg, Karl Trygve
Pelka, Obioma
Nedjar, Imane
Geras, Krzysztof J.
Nensa, Felix
Goan, Ethan
Koitka, Sven
Caballero, Luis
Cox, David D.
Krishnaswamy, Pavitra
Pandey, Gaurav
Friedrich, Christoph M.
Perrin, Dimitri
Fookes, Clinton
Shi, Bibo
Cardoso Negrie, Gerard
Kawczynski, Michael
Cho, Kyunghyun
Khoo, Can Son
Lo, Joseph Y.
Sorensen, A. Gregory
Jung, Hwejin
author_facet Schaffter, Thomas
Buist, Diana S. M.
Lee, Christoph I.
Nikulin, Yaroslav
Ribli, Dezső
Guan, Yuanfang
Lotter, William
Jie, Zequn
Du, Hao
Wang, Sijia
Feng, Jiashi
Feng, Mengling
Kim, Hyo-Eun
Albiol, Francisco
Albiol, Alberto
Morrell, Stephen
Wojna, Zbigniew
Ahsen, Mehmet Eren
Asif, Umar
Jimeno Yepes, Antonio
Yohanandan, Shivanthan
Rabinovici-Cohen, Simona
Yi, Darvin
Hoff, Bruce
Yu, Thomas
Chaibub Neto, Elias
Rubin, Daniel L.
Lindholm, Peter
Margolies, Laurie R.
McBride, Russell Bailey
Rothstein, Joseph H.
Sieh, Weiva
Ben-Ari, Rami
Harrer, Stefan
Trister, Andrew
Friend, Stephen
Norman, Thea
Sahiner, Berkman
Strand, Fredrik
Guinney, Justin
Stolovitzky, Gustavo
Mackey, Lester
Cahoon, Joyce
Shen, Li
Sohn, Jae Ho
Trivedi, Hari
Shen, Yiqiu
Buturovic, Ljubomir
Pereira, Jose Costa
Cardoso, Jaime S.
Castro, Eduardo
Kalleberg, Karl Trygve
Pelka, Obioma
Nedjar, Imane
Geras, Krzysztof J.
Nensa, Felix
Goan, Ethan
Koitka, Sven
Caballero, Luis
Cox, David D.
Krishnaswamy, Pavitra
Pandey, Gaurav
Friedrich, Christoph M.
Perrin, Dimitri
Fookes, Clinton
Shi, Bibo
Cardoso Negrie, Gerard
Kawczynski, Michael
Cho, Kyunghyun
Khoo, Can Son
Lo, Joseph Y.
Sorensen, A. Gregory
Jung, Hwejin
author_sort Schaffter, Thomas
collection PubMed
description IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. MAIN OUTCOMES AND MEASUREMENTS: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists’ specificity with radiologists’ sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists’ recall assessment was developed and evaluated. RESULTS: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists’ sensitivity, lower than community-practice radiologists’ specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. CONCLUSIONS AND RELEVANCE: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation.
format Online
Article
Text
id pubmed-7052735
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Medical Association
record_format MEDLINE/PubMed
spelling pubmed-70527352020-03-16 Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Schaffter, Thomas Buist, Diana S. M. Lee, Christoph I. Nikulin, Yaroslav Ribli, Dezső Guan, Yuanfang Lotter, William Jie, Zequn Du, Hao Wang, Sijia Feng, Jiashi Feng, Mengling Kim, Hyo-Eun Albiol, Francisco Albiol, Alberto Morrell, Stephen Wojna, Zbigniew Ahsen, Mehmet Eren Asif, Umar Jimeno Yepes, Antonio Yohanandan, Shivanthan Rabinovici-Cohen, Simona Yi, Darvin Hoff, Bruce Yu, Thomas Chaibub Neto, Elias Rubin, Daniel L. Lindholm, Peter Margolies, Laurie R. McBride, Russell Bailey Rothstein, Joseph H. Sieh, Weiva Ben-Ari, Rami Harrer, Stefan Trister, Andrew Friend, Stephen Norman, Thea Sahiner, Berkman Strand, Fredrik Guinney, Justin Stolovitzky, Gustavo Mackey, Lester Cahoon, Joyce Shen, Li Sohn, Jae Ho Trivedi, Hari Shen, Yiqiu Buturovic, Ljubomir Pereira, Jose Costa Cardoso, Jaime S. Castro, Eduardo Kalleberg, Karl Trygve Pelka, Obioma Nedjar, Imane Geras, Krzysztof J. Nensa, Felix Goan, Ethan Koitka, Sven Caballero, Luis Cox, David D. Krishnaswamy, Pavitra Pandey, Gaurav Friedrich, Christoph M. Perrin, Dimitri Fookes, Clinton Shi, Bibo Cardoso Negrie, Gerard Kawczynski, Michael Cho, Kyunghyun Khoo, Can Son Lo, Joseph Y. Sorensen, A. Gregory Jung, Hwejin JAMA Netw Open Original Investigation IMPORTANCE: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. MAIN OUTCOMES AND MEASUREMENTS: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists’ specificity with radiologists’ sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists’ recall assessment was developed and evaluated. RESULTS: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists’ sensitivity, lower than community-practice radiologists’ specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. CONCLUSIONS AND RELEVANCE: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. American Medical Association 2020-03-02 /pmc/articles/PMC7052735/ /pubmed/32119094 http://dx.doi.org/10.1001/jamanetworkopen.2020.0265 Text en Copyright 2020 Schaffter T et al. JAMA Network Open. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the CC-BY License.
spellingShingle Original Investigation
Schaffter, Thomas
Buist, Diana S. M.
Lee, Christoph I.
Nikulin, Yaroslav
Ribli, Dezső
Guan, Yuanfang
Lotter, William
Jie, Zequn
Du, Hao
Wang, Sijia
Feng, Jiashi
Feng, Mengling
Kim, Hyo-Eun
Albiol, Francisco
Albiol, Alberto
Morrell, Stephen
Wojna, Zbigniew
Ahsen, Mehmet Eren
Asif, Umar
Jimeno Yepes, Antonio
Yohanandan, Shivanthan
Rabinovici-Cohen, Simona
Yi, Darvin
Hoff, Bruce
Yu, Thomas
Chaibub Neto, Elias
Rubin, Daniel L.
Lindholm, Peter
Margolies, Laurie R.
McBride, Russell Bailey
Rothstein, Joseph H.
Sieh, Weiva
Ben-Ari, Rami
Harrer, Stefan
Trister, Andrew
Friend, Stephen
Norman, Thea
Sahiner, Berkman
Strand, Fredrik
Guinney, Justin
Stolovitzky, Gustavo
Mackey, Lester
Cahoon, Joyce
Shen, Li
Sohn, Jae Ho
Trivedi, Hari
Shen, Yiqiu
Buturovic, Ljubomir
Pereira, Jose Costa
Cardoso, Jaime S.
Castro, Eduardo
Kalleberg, Karl Trygve
Pelka, Obioma
Nedjar, Imane
Geras, Krzysztof J.
Nensa, Felix
Goan, Ethan
Koitka, Sven
Caballero, Luis
Cox, David D.
Krishnaswamy, Pavitra
Pandey, Gaurav
Friedrich, Christoph M.
Perrin, Dimitri
Fookes, Clinton
Shi, Bibo
Cardoso Negrie, Gerard
Kawczynski, Michael
Cho, Kyunghyun
Khoo, Can Son
Lo, Joseph Y.
Sorensen, A. Gregory
Jung, Hwejin
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title_full Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title_fullStr Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title_full_unstemmed Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title_short Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
title_sort evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms
topic Original Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052735/
https://www.ncbi.nlm.nih.gov/pubmed/32119094
http://dx.doi.org/10.1001/jamanetworkopen.2020.0265
work_keys_str_mv AT schaffterthomas evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT buistdianasm evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT leechristophi evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT nikulinyaroslav evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT riblidezso evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT guanyuanfang evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT lotterwilliam evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT jiezequn evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT duhao evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT wangsijia evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT fengjiashi evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT fengmengling evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT kimhyoeun evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT albiolfrancisco evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT albiolalberto evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT morrellstephen evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT wojnazbigniew evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT ahsenmehmeteren evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT asifumar evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT jimenoyepesantonio evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT yohanandanshivanthan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT rabinovicicohensimona evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT yidarvin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT hoffbruce evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT yuthomas evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT chaibubnetoelias evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT rubindaniell evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT lindholmpeter evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT margolieslaurier evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT mcbriderussellbailey evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT rothsteinjosephh evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT siehweiva evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT benarirami evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT harrerstefan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT tristerandrew evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT friendstephen evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT normanthea evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT sahinerberkman evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT strandfredrik evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT guinneyjustin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT stolovitzkygustavo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT mackeylester evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT cahoonjoyce evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT shenli evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT sohnjaeho evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT trivedihari evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT shenyiqiu evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT buturovicljubomir evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT pereirajosecosta evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT cardosojaimes evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT castroeduardo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT kallebergkarltrygve evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT pelkaobioma evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT nedjarimane evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT geraskrzysztofj evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT nensafelix evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT goanethan evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT koitkasven evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT caballeroluis evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT coxdavidd evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT krishnaswamypavitra evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT pandeygaurav evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT friedrichchristophm evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT perrindimitri evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT fookesclinton evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT shibibo evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT cardosonegriegerard evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT kawczynskimichael evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT chokyunghyun evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT khoocanson evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT lojosephy evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT sorensenagregory evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms
AT junghwejin evaluationofcombinedartificialintelligenceandradiologistassessmenttointerpretscreeningmammograms